论文部分内容阅读
随着互联网技术的发展和信息化水平的提高,图像数据量也呈现了爆炸式的增长。在庞大的图像数据库中,计算机如何高效地挑选图像数据,对图像分类技术提出了一定的挑战。由于近几年深度学习快速发展,凭借着其较高的准确率与识别效率,借助深度学习进行图像分类技术己经逐渐取代了人工标注特征进行图像分类,但是深度学习在训练过程中往往存在参数难以调整,训练样本需求量较大且训练时间过长的缺点。针对以上问题,研究在小数量样本情况下,如何高效利用深度学习进行图像识别是很有意义的,也增强了不同样本情况下的深度学习模型的适应能力。针对小样本识别的众多问题,例如,极容易过拟合、模型泛化性较差等,本文提出基于深度学习的小样本分类识别模型,优化方向主要基于以下两个方面,第一是图像样本数量的增强,第二是识别模型的优化。在进行样本数量增强时,提出生成式模型与图像预处理相结合的技术。首先利用全连接生成式模型进行样本增强,针对全连接神经网络参数过多的问题,利用卷积神经网络代替全连接神经网络进行图像训练。由于产生的样本图像具有随机性,本文利用条件生成式模型进行样本生成,所产生的样本集合含有labels,在后续的监督式分类学习中可以得到很好的应用。针对在条件生成模型中产生样本出现模糊的问题,提出基于小波变换与自适应数学形态学的图像边缘检测技术。该方法可以很好的克服边缘模糊问题;此外,由于生成的样本往往存在噪声,本文提出基于经验模态分解与稀疏表示相结合的图像去噪技术,优化的去噪模型可以很好的在去除噪声的同时保留图像的边缘细节。因此利用融合模型进行的图像样本数量增强可以很好的扩大样本,用于下一部分的分类模型。在进行小样本分类模型中,利用迁移学习进行模型分类,迁移学习往往能在较少的训练样本集中达到较高的识别效率。本文结合生成模型与迁移学习,利用融合模型进行小样本图像识别。迁移学习采用Inpection-V3模型进行训练,相比较于单纯进行卷积神经网络进行分类训练,加入迁移学习可以提高模型的泛化能力,模型的训练效率也有了很大的提升,在样本缺失时,基于迁移学习的分类模型,由于只需要再训练,因此识别的准确率也得到了很大的提升。结合上一部分的样本增强技术,在样本缺失时,本文通过增加仿造样本与迁移学习相结合的方式进行模型融合并分类,利用标准数据集与拍摄的树叶图像作实验对比,在准确率上,本文算法相比较于单纯使用迁移学习和卷积神经网络均有所提升,对于样本量不足的实验环境中进行深度学习分类具有很好的参考意义。