Cu2O NPs的合成及其催化的CuAAC反应用于E-DNA传感器构建

来源 :哈尔滨工业大学 | 被引量 : 0次 | 上传用户:ph103
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
一价铜盐催化的炔基-叠氮环加成(Cu AAC)反应具有“近乎完美”的成键性质,目前已经在化学、生物学和材料科学中得到了广泛的应用。近年来研究人员开发了多种Cu(Ι)均相和非均相催化剂催化Cu AAC反应,包括Cu(Ⅱ)/还原剂、Cu(0)/氧化剂、Cu(Ι)/辅助配体以及Cu(Ι)化合物。均相催化体系中Cu(Ι)催化剂与最终产品难以分离,造成经济与环境问题,阻碍其更进一步的应用。非均相催化剂具有易回收、可重复利用等特性,因此,非均相催化剂成为了研究热点。本文旨在研究Cu(Ι)非均相催化体系,其中Cu2O作为一种廉价、易得且重要的过渡金属氧化物,在催化Cu AAC反应中受到研究人员的广泛关注。然而,Cu2O纳米材料在空气中易氧化,导致催化活性降低。本论文着重于合成不同的Cu2O纳米材料,提升其在反应中的稳定性能和催化活性,主要研究内容如下:合成一种能够增强空气中Cu2O纳米材料稳定性的g-C3N4Cu2O复合材料。二维纳米材料g-C3N4化学性质稳定,制备方法简单,故本论文以g-C3N4为负载物,采用改进的溶剂热法并通过优化g-C3N4的用量、反应时间、表面活性剂PVP的用量及粒子生长抑制调节剂柠檬酸钠的用量制备g-C3N4Cu2O复合材料。通过TEM、XRD、FTIR等表征手段表明,合成出了粒径均一、大小一致(30±5nm)、在g-C3N4上分散性好的复合材料。另外,制备了一种产量高、易回收利用的Cu2O纳米线。通过优化反应温度、HAc浓度、表面活性剂PTCDA用量等实验条件,得到了形貌为均一线形、排列一致、直径尺寸50±5 nm的Cu2O纳米,并用TEM、XRD、FTIR等技术对Cu2O纳米线进行了表征。构建电化学DNA(E-DNA)传感器用于检测合成的g-C3N4Cu2O复合材料和Cu2O纳米线催化Cu AAC反应的催化活性,通过测试得到的交流伏安峰值电流和计算得到的电化学探针表面覆盖度Γ*表明,5%g-C3N4Cu2O复合材料表现出更高的催化活性,在后续的稳定性测试结果表明,30天后5%g-C3N4Cu2O复合材料仍然具有高催化活性。同样地,通过制备不同的电化学DNA传感器,比较了不同合成条件下Cu2O纳米线的催化活性。结果表明,当HAc浓度为10m M,反应温度为180℃,PTCDA用量为1.5 mg时合成的Cu2O纳米线催化活性最好。
其他文献
聚对苯撑苯并二噁唑(PBO)纤维具有高强韧、耐高温、不易断裂等特点,是一种非常优秀的高性能有机纤维。但PBO纤维表面惰性,与树脂基体相容性差,界面性能弱,极大的限制了PBO纤维在复合材料领域的应用。基于此,本文提出了一种同时增加纤维单丝强度与其界面强度的PBO纤维表面改性方法。采用原位交联溶胀法在PBO纤维表面涂覆聚乙烯醇(PVA)/环氧交联涂层,确立了对PBO纤维较温和的表面改性方式。采用红外光
石油是重要的能源和化工原料。世界稠油探明储量约为8150亿吨,占全球石油剩余储量的70%。注汽锅炉是目前进行稠油开采的重要设备,注汽锅炉的蒸汽干度决定了稠油开采的效率和质量,蒸汽干度越高,单位蒸汽所携带的热量越多,稠油开采率就越高;如果蒸汽干度过高,会使炉管温度急剧升高,蒸汽中的盐类成分析出固结在管壁上形成垢,导致传热恶化并形成堵塞,影响锅炉安全运行,甚至可能引发爆管事故。因此,注汽锅炉蒸汽干度检
随着信息技术的飞速发展,电磁污染愈来愈严重,防治电磁污染的主要手段就是发展电磁屏蔽材料,反射和吸收是其中的两种主要实现手段,而吸波材料因具有绿色不会导致二次电磁污染的优势而备受瞩目。在众多的吸波材料中,碳材料具有轻质、多极化、介电性能可调的优势,是近年来吸波领域研究的热点材料。但是,在之前的研究中,碳材料往往制备成型方法复杂、成本较高,同时,由于吸波机理单一,碳材料的有效吸收带宽较窄,因此限制了碳
在实际工程应用中,相比于传统的弹塑性材料,当粘弹性材料受到外载荷作用时,材料响应不仅取决于载荷大小,而且与加载时间相关,例如:混凝土、高聚合材料、高应变率下的金属材料等。对于这种具有弹性性质和粘性性质的粘弹性材料,弹性力学没有考虑时间效应的影响,因此不能精确地描述其力学性能。近些年来,如何合理地描述粘弹性材料的力学性能成为研究热点,特别是诸如混凝土等广泛使用的具有典型多尺度特征的材料。鉴于此,本文
新媒体时代,中医药漫画作为对青少年产生深远影响的内容载体,对我国中医药文化的传播起着至关重要的作用。本研究基于对40部中医药题材漫画读者评论的统计分析,从不同维度探究中医药漫画出版物的文化传播效果并为这类题材选题的出版献计献策。
石墨烯(Graphene,Gr)具有优异的力学性能、导热性能、导电性能,是理想的复合材料增强体。粉末冶金是常用的制备石墨烯增强金属基复合材料的方法。由于球磨过程和原位自生过程中中石墨烯会产生较多的缺陷,导致了其性能的下降。因此,本研究通过分子动力学模拟的方法模拟了缺陷修复的过程,并采用化学气相沉积(CVD)以及等离子体增强化学气相沉积(PECVD)的方法对石墨烯中的缺陷进行修复工艺的探索。本文模拟
藻蓝蛋白(C-phycocyanin,C-PC),一种天然生物可直接食用且具荧光的蛋白。因其独特的物理生物特性而被广泛应用于食品、保健、医疗、生物靶向治疗等多个方面。国际上多将藻蓝蛋白的纯度划分为食品级、分析级、试剂级三个等级,其纯度决定了价格,纯度越高则应用价格越高,寻找更为高效、简捷、绿色的藻蓝蛋白分离纯化方法是具有重要的理论和现实意义的。低共熔溶剂(Deep Eutectic Solvent
形状记忆聚合物(Shape Memory Materials,SMP)是一种新型智能材料,可以在外界刺激下发生变形,且形状可控。由于驱动方式多变、形变量大、成本低等,其在诸多领域都取得了非常广泛的应用。生物质材料不仅有着环保、来源广泛、生物相容性好的优势,其性能也非常独特,比如降解性强、质轻、强度高等,经常用于制作复合材料。基于此,本文将骨外固定器作为应用背景,为克服现有固定器笨重、环保性差、透气
本文基于低能球磨与原位自生技术,首次选用TC18钛合金为基体,TiB2作为B源,成功制备了低含量(≤2.0vol.%)TiBw/TC18网状结构复合材料。利用热挤压变形与热处理,进一步对复合材料的组织进行调控。研究了不同状态下复合材料的拉伸性能与断裂机制。利用光学显微镜(OM)、扫描电子显微镜(SEM)、电子背散射衍射(EBSD)以及透射电子显微镜(TEM)对不同状态、不同增强体含量的材料进行组织
BAS微晶玻璃是一种具有较高的机械强度、硬度、耐磨性以及热稳定性的先进陶瓷材料,具有较高的军事和民用价值。但是其较低的韧性限制了其应用,因此对于这种材料的研究集中在强韧化处理上。本文从晶须增强和纤维增强两种强韧化手段出发,以BAS微晶玻璃为基体制备两种复合材料,建立内部结构与宏观力学性能的响应关系,研究其增韧机理。首先是采用溶胶凝胶法结合碳热还原氮化法在BAS基体内部原位生成Sialon晶须,制备