形变织构及亚结构对Ti-6Al-4V合金氮化复合时效组织影响研究

来源 :哈尔滨工程大学 | 被引量 : 0次 | 上传用户:liongliong564
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Ti-6Al-4V(TC4)合金是世界上应用最广泛的钛合金,但硬度低、耐磨性差,本文设计820℃固溶处理+冷轧变形+450℃低温等离子渗氮及时效的复合工艺以提升Ti-6Al-4V整体综合性能。利用金相显微镜、扫描电子显微镜(SEM)、EDS能谱分析、透射电子显微镜(TEM)、X射线衍射分析仪(XRD)、背散射电子衍射技术(EBSD)等手段分析表征变形组织及氮化组织变化,利用摩擦磨损测试、显微硬度测试考核评价了硬度和耐磨性。变形组织结构分析显示,Ti-6Al-4V合金在820℃固溶处理冷却过程中发生了β-Ti向α-Ti的转变,随着变形量的增加,基体内部可能存在的亚稳态的α’相和β’相在轧制过程中进一步分解产生β-Ti,β-Ti的含量增多且分布在α-Ti晶界处,晶粒转动导致Burgers位向关系被破坏;试样经过急速水冷后,内部存在大量残余应力并在晶界处产生了大量的位错,位错互相缠结形成位错墙和位错胞,随着变形程度的增加,位错不断向晶粒内部运动、增殖,位错密度不断增大。合金织构随着变形量的增大发生了变化,由近似横向织构转变为横向织构,基面位向集中在TD方向,柱面位向集中在RD方向。氮化组织结构研究表明,Ti-6Al-4V合金试样经过变形渗氮后,试样中没有氮化层、扩散层的明显界面,N元素扩散深入合金基体内部贯通于整个试样当中,生成了高硬TiN相,表面TiN含量高于心部含量,30%变形量试样TiN含量最多,分布最均匀。渗氮后试样内部β-Ti较渗氮前增多,发生了时效强化作用,部分α-Ti转变为β-Ti。生成的一部分TiN的{001}晶面、{110}晶面分别平行于β-Ti的{110}、{111}晶面在α-Ti晶界处与β-Ti中的Ti元素结合生成并向β-Ti生长;另有一部分TiN的{110}晶面沿着α-Ti{112~—0}晶面在α-Ti晶粒内部的位错处形核生成。未变形试样在450℃渗氮22h过程中发生了再结晶现象,晶粒尺寸减小了大约一倍,小角度晶界减少;30%变形量试样和50%变形量试样在渗氮过程中发生了回复与再结晶,50%变形试样的再结晶程度不如30%变形试样。影响TiN生成的材料内部因素主要有三个:位错密度、回复再结晶程度以及晶粒取向,生成TiN的含量由三者综合作用决定。位错密度越大、再结晶程度越高(晶界数量越多)、晶体织构越接近横向织构(基面位向集中在TD方向,柱面位向集中在RD方向),生成TiN越多,因此三者综合作用30%变形量试样的TiN含量最高。性能研究显示,冷轧变形对合金耐磨性有提升作用;经过渗氮后摩擦系数和体积磨损率整体上进一步减小,30%变形量试样的体积磨损率最小。渗氮前试样的磨损机制主要为粘着磨损+疲劳磨损+少量磨粒磨损,冷轧变形后,磨粒磨损增多,30%变形量试样磨粒磨损现象最为明显;渗氮后,试样的磨损机制以磨粒磨损为主,同时渗氮22h试样心部硬度大幅度提升,说明冷轧形变促渗+低温渗氮及时效工艺能够有效地提升试样表面和心部性能,材料整体综合性能得到了较高提升。
其他文献
Ti-V-Al合金因其具有低密度、优异的机械加工性能和良好的可恢复应变,是航天领域轻质形状记忆合金重要的备选合金之一。航天密封连接件对合金强度和形状记忆效应都有较高要求
本文主要针对舰船海底地震波初至波的识别算法进行研究。旨在避开分形算法和小波变换算法的缺点,利用这两者的优点形成分形维数和小波变换复合算法,从而减小初至波识别的计算
本文以双燃烧室超燃冲压发动机(DCR)燃烧室内部富燃燃气与超声速空气来流的混合为研究背景,将具体的工程问题抽象为超声速湍流混合层的物理现象作为研究对象。综合运用了大涡
随着科学技术的快速发展,具有自由曲面类外形的零件在飞机、船舶以及汽车等领域的应用日益广泛,并且对这些零件的型面加工效率和精度要求越来越高。叶片是航空发动机、燃气轮
为解决全球能源短缺问题以及更好地节能减排,以氢能为能源的质子交换膜燃料电池(Polymer Electrolyte Membrane Fuel Cell,PEMFC)具有功率密度高、效率高、无污染等优势,已被广泛应用在便携式、移动式电源与固定发电领域[1]。然而,性能衰减快与寿命短严重阻碍了PEMFC大规模商业化的发展。对此,本文采用基于模型与数据驱动的方案,在COMSOL中建立二维稳态质子交换膜
学位
地质构造复杂带发生的突出事故占突出总数的90%以上,地质构造带是影响突出的主要因素之一。目前,煤炭开采逐步向地质条件复杂的区域推进。因此,研究断层对煤巷掘进过程中煤与
植物纤维复合材料逐渐成为了新时代材料研究的热点,在众植物纤维中有着“中国草”之称的苎麻纤维因其卓越的性能尤为突出。苎麻纤维从远古时代就成为了中国人重要的纺织纤维,
现代炼钢过程广泛采用铝脱氧。研究铝脱氧反应机理,对提高铝镇静钢的洁净度以及优化控制夹杂物数量、尺寸、尺寸分布和形貌有重要作用。为了揭示铝脱氧反应过程机理,本文采用
磁共振成像是一种先进的医学成像模式,旨在通过外部的射频线圈来激发和接收内部原子的响应。图片的质量取决于大量的目标原子、射频线圈的激发功率、接收线圈的灵敏度等。在
在过去的几十年中,有机固体发光材料不断地在有机电致发光二极管、有机固态激光器和荧光传感器等众多光电领域显示出非凡的应用价值。与此同时,在提升有机固体材料的发光性能