【摘 要】
:
二维(2D)材料由单层或少量原子层组成。相对于三维材料,二维材料的载流子迁移被限制在二维平面内,展现出许多优异的性质,有望解决材料尺度极限等带来的新一代高性能技术瓶颈。值得注意的是,2014年人们通过机械剥离的方法制备出二维单层黑磷(Black Phosphorus),称为磷烯(Phosphorene)。与石墨烯不同,磷烯是二维半导体,展现出很多独特的性质,例如:高各向异性有效质量、高载流子迁移率
论文部分内容阅读
二维(2D)材料由单层或少量原子层组成。相对于三维材料,二维材料的载流子迁移被限制在二维平面内,展现出许多优异的性质,有望解决材料尺度极限等带来的新一代高性能技术瓶颈。值得注意的是,2014年人们通过机械剥离的方法制备出二维单层黑磷(Black Phosphorus),称为磷烯(Phosphorene)。与石墨烯不同,磷烯是二维半导体,展现出很多独特的性质,例如:高各向异性有效质量、高载流子迁移率、可调的能隙,等等。因此,磷烯在纳米电子学和光电子学中的有着重要的潜在应用前景。尽管如此,磷烯中各种缺陷的影响和空气中快速降解行为等强烈限制了磷烯的应用。众所周知,本征缺陷和杂质通常是不可避免地出现在真实的材料制备中,而大多数点缺陷和杂质可以在多种电荷状态下发生,并且能够一定程度上影响材料的物理和化学性质。此外,磷烯表面暴露的孤对电子具有很高的活性,在外界环境下的磷烯表面会发生快速氧化,从而影响磷烯电子器件的性能。更重要的是,缺陷可能提供高活性位点,将在很大程度上影响磷烯在空气中与环境分子相互作用。因此,系统研究磷烯的缺陷电子态、缺陷对氧化反应的影响,以及相关物理机制至关重要。本文利用第一性原理计算方法,系统地研究了磷烯中单空位SV(5|9)和双空位DV(5|8|5)的缺陷电子态和相关的表面氧化机制。研究结果发现,单空位SV(5|9)和双空位DV(5|8|5)-I缺陷都可以达到稳定的+1电荷态,并且对磷烯缺陷的几何结构形状和电子性质都有很大的影响,缺陷构型和缺陷周围的局部键长对电荷态非常敏感。通过Ci-NEB对反应途径的模拟计算,我们发现空位缺陷可以显著降低氧分子解离的反应势垒。更重要的是,我们提出了一种独特的二维材料表面双空位双氧化机制。在这种反应机制下,氧化反应势垒为0.26 e V,这与实验上磷烯在空气中的快速降解相符合。其次,氧化反应能够改变空位缺陷的电子态。最后,通过分析氧化后磷烯的电子结构,进一步解释了实验中观察到暴露在外界环境下磷烯薄片中P型掺杂的减少以及带隙适度增大的现象。这项工作对于磷烯的高性能器件在缺陷工程中的各种应用具有重要意义。
其他文献
随着世界各国对环境问题的日益重视,如何有效处理污水成为科研领域的热门课题之一。光催化技术(Photocatalysis,PC)在使用过程中处理效率高、清洁无污染,受到科研工作者的青睐。PC技术能够产生具有强氧化性的活性粒子,如空穴(h+)、羟基自由基(·OH)、超氧自由基(O2·-)等,这些活性粒子可以无选择地破坏有机污染物的化学结构,并将其降解为二氧化碳(CO2)、水(H20)等无机小分子。光催
自动驾驶是汽车行业发展的一个重要方向,它能够改变人们的出行方式,引起社会的重大变革。目前世界各国纷纷出台国家战略,企图抢占自动驾驶的制高点,推动国家社会经济发展。目前单车道的智能化如ACC(自适应巡航)、IACC(集成式自适应巡航)、LKA(车道保持辅助)等功能已经逐渐普及,智能汽车正从单车道的Lv.2级往多车道的Lv.3级自动驾驶发展。如何在动态交通环境下实现智能的换道决策以及安全高效舒适的换道
时滞微分方程在生态学、工程学等众多领域中都有着非常广泛的应用,因而研究时滞微分方程具有重要的理论意义和实际意义.其中关于时滞微分方程周期解的相关研究是比较重要的研究课题之一.本文基于Kaplan-Yorke法,研究了一类含参时滞微分方程的6ri/6ki-i(6ri/6ki’+i)-周期解和3ri/3ki-i(3ri/3ki’+i)-周期解的存在性及个数问题.本文首先介绍了时滞微分方程的研究背景及相
本文研究在内部边界随机的情况下求解Bernoulli自由边界问题的数值方法,通过截断的Karhunen-Lo(?)ve展开法对边界上的随机变量进行参数化,采用随机配点法对形状梯度进行高维积分估计.基于目标泛函的梯度,用水平集方法表示所求的最优自由边界,基于有限元方法离散状态方程和伴随方程,最后我们进行了相关的数值实验,并与确定性Bernoulli自由边界问题进行比较,结果表明随机性对自由边界问题具
格子玻尔兹曼方法(LBM)是一种用于流体流动建模的介观方法.本文选择FEM和LBM耦合来研究不可压缩稳态Navier-stokes问题并提出了两种算法:LBM-FEM的二重网格和FEM-LBM的局部并行算法.LBM-FEM的二重网格算法主要是利用了LBM在处理稳态流时对初值不敏感的特性和有限元两重网格的思想.首先将LBM应用在较大的格子上计算稳态解,随后将其解插值到相应的细网格的有限元空间中,接着
缺陷对调控光电器件性能有着重要作用,但同时缺陷诱导的非辐射载流子俘获也是限制其性能的关键因素。实验上可以通过DLTS等手段来测量载流子俘获截面,然而运用第一性原理计算研究该截面却很难。近年来,基于电声耦合效应和静态耦合理论计算俘获截面的方法已经应用在Ga N等体系中,但硅体系的研究却鲜有报道。本文主要研究硅中硫杂质的微观结构和载流子俘获截面。计算俘获截面的关键步骤是计算电声耦合矩阵元,而原有的Qu
在现代量子信息理论的背景下,量子纠缠被视为执行许多不同方案(从隐形传态到量子计算)的资源。作为区分量子与经典物理的显著特征,多粒子系统纠缠态的产生和操纵对未来的量子技术具有重要意义。与此同时,玻色爱因斯坦凝聚由于其基本特性以及高相干性,而受到越来越多的关注。然而,在任何真实的实验中,系统总或多或少地受到环境的影响和作用,从而导致退相干。这给量子通信和量子计算带来了极大的挑战。因此,了解纠缠态的退相
一维硒(Se)、碲(Te)纳米材料由于具有独特、优异的光电性能而被广泛应用在通信、化工、生命科学等领域,然而离实际大规模应用还有一段很长的路要走。首先,在一维纳米结构生长机理研究方面,先前的许多文献已经报道了多种Se纳米线的合成方法,但是从热力学角度研究Se纳米线生长机理的文献却比较少。其次,搭建半导体纳米器件的成功率都比较低,极大地限制了Se、Te半导体材料在光电探测器方面的应用。针对以上问题,
近年来,图的控制理论及其相关问题是图论中一个比较活跃的研究领域,它是从实际的应用领域提出来的.研究它不仅具有重要的理论意义,而且在通讯网络的设计与分析、优化理论、社会科学、计算的复杂性和算法设计等很多领域也有广泛的应用.由于确定一个图的控制数是NP-完全的,因此目前只有少数图的控制数已经得到很好研究.本文主要研究了I-图和广义Petersen图的控制数.在已有研究成果Pe-tersen图存在有效控
作为替代传统内存的理想候选者,尤其是在并行系统中,磁畴壁存储(DWM)具有许多优秀特性,例如低泄漏功耗,高密度和低访问延迟。但是,由于DWM具有类似磁带的条带型结构,因此访问数据之前的移位操作对DWM的访问延迟性能具有至关重要的影响。考虑到并行系统中的数据密集型访问应用程序,它们往往具有大量的循环程序且访问数组类型的数据。提高循环程序的并行度进行相应的指令调度,辅以在DWM上进行适当的数据放置,将