监督过失犯罪结果归责研究

来源 :华东师范大学 | 被引量 : 0次 | 上传用户:yuyuxinmi
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
监督过失不是过失的新类型,而只是在预见可能性程度上有所降低的特殊过失形态。监督过失可归责的正当性根据,在于劳动分工基础上维护社会有机团结的要求。监督过失理论研究对我国司法实践的意义,在于对监督者加重处罚并限制其处罚范围。监督过失处罚并不违反责任主义,也并非是风险社会下预防刑法的典例,对监督过失的研究仍未脱离传统刑法理论的范畴。我国司法实践呈现出三元监督主体归责倾向,实务中存在注重责任的划分而非归责、归责范围宽窄不一、归责标准不明以及监督过失定位模糊的问题。如何对监督过失犯罪进行规范层面的结果归责判断,即在何种意义上对监督者应当以监督过失追究刑事责任成为问题的核心。过失犯的归责路径在判断注意义务、实行行为、预见可能性、结果回避可能性时存在学说上的诸多分歧,不作为犯的归责路径下作为义务与注意义务并不相同且存在重复判断,客观归责路径的规范归责思想值得借鉴。为与我国司法实务和传统刑法理论相协调,采用固有过失要素基础上的客观归责路径较为妥当,即在维持过失犯概念范围内判断风险制造和风险实现。在判断风险制造时,注意义务可从安全监督管理规范中推断,但实质是规范保护目的范围内的谨慎义务。对于注意义务违反的判断,可以创设或升高法所不容许危险的标准进行实质把握。在判断风险实现时,被监督者故意犯罪应当排除归责、合义务替代行为并不必然排除归责、信赖原则有外部成熟的操作环境为依托时可排除归责。
其他文献
农村居民点是一定规模农村人口根据自然、社会、经济条件及血缘关系集中进行生产生活的场所,其形态受自然、经济社会和政策调控综合影响。伴随新农村建设、新型城镇化和城乡统筹等重大战略的深入推进,中国农村居民点正在不断转型与重构,出现了乡村人口流失的同时农村居民点用地面积反而不断增多的悖象。建设用地扩张势必导致乡村生产空间与生态空间遭受挤压,加剧乡村功能空间结构失衡,引发三生功能产生矛盾冲突,带来生态环境退
学位
在高维情形下关于多元正态分布协方差矩阵的估计一直以来都是统计学中的基础问题。在诸如异常心电图分析这样的实际问题中,我们得到的高维数据只有几个分量是脉冲的,其余分量全是稀疏的。本文将此情形下所对应的协方差矩阵称为Sparse-Spike协方差矩阵。在高维数据处理问题中我们得到的样本数常远小于矩阵维数,本文将小样本情形下对于协方差矩阵的估计和特征提取称为它的低秩学习。本文所研究的Sparse-Spik
学位
商圈是一个城市的商业招牌,也在一定程度上反映了当地经济发展的水平。商圈分析可以帮助国家和地方政府了解商圈发展态势,为制定商圈发展规划和政策导向提供科学依据。另外,商圈分析还能为经营者选择经营场所、制定和调整经营方针和策略提供依据。基于以上背景,本文以上海市商圈为研究主体,基于银联数据,采用统计学方法,对商圈客户转移消费问题进行了深入分析。由于商圈之间的客户转移数量是一个矩阵数据时间序列,并且某些商
学位
相较于单臂机器人,双臂机器人拥有冗余的自由度,能够执行更灵巧的操作和完成更复杂的协同任务。双臂机器人在进行灵巧操作时,末端执行器之间的距离往往非常接近,在对双臂协作机器人进行轨迹规划时,要求提供十分精确的碰撞检测算法,以保证机械臂的安全。针对上述问题,本文对面向双臂协作机器人的连续碰撞检测算法进行研究,主要研究内容为:·提出了一种面向双臂协作机器人灵巧操作的连续碰撞检测算法,该算法基于泰勒模型在机
学位
近年来,深度神经网络在许多分类任务中已经达到了很高的准确率,这些任务包括语音识别,目标检测以及图片分类等。尽管深度神经网络对随机的噪声是具有鲁棒性,但是当对神经网络输入添加一些不能被人眼察觉的特殊扰动会使得深度神经网络模型输出错误的预测值。通常把这些添加了特殊扰动的样本称作对抗样本。为了使得深度神经网络的鲁棒性提升,对于深度神经网络防御对抗样本的方法进行了研究。在对抗防御的方法中包括三种:梯度遮蔽
学位
随着信息技术的发展,图作为一种便捷且有效的建模方式,被广泛用于表示复杂的结构化数据。异常节点检测是图分析领域中的重要课题,在诸如社交网络的恶意账户检测,金融网络的欺诈检测等现实生活中有着广泛的应用。图异常节点检测场景的数据往往具有复杂的拓扑结构关系,传统领域的异常检测方法难以处理复杂的关系,此外,信息多元,标签不平衡等特点也造成现有的异常节点检测算法在性能上不尽如意,影响异常检测任务的表现。为了高
学位
现代人们大部分时间都在室内环境中度过,例如家庭、办公室、购物中心、大学、图书馆和机场。然而,很多现有的基于位置的服务都只针对室外空间而设计,这主要是因为全球定位系统等定位技术无法准确识别室内场馆的位置。然而近年来室内定位技术的突破开始逐渐克服了这一难题,为研究机构、政府机构、技术巨头和有进取心的初创企业带来了巨大的未来机会——可以充分挖掘室内基于位置的服务的潜力。因此,室内数据管理在过去几年中获得
学位
密度聚类被广泛用于模式识别、信息检索、图像分析、复杂网络分析等众多领域来识别真实世界数据集的隐藏结构。目前的密度峰算法往往只能处理结构化的完整数据,很多情况下表现不佳。其一,现实世界中的数据往往存在缺失或错误值,对于这样的不完整数据集,目前的处理方法是进行数据插补,然后采用传统聚类方法进行处理,这样导致精度下降,并且插补后的点的‘聚集现象’可能导致密度峰聚类失效。其二,对于更常见的半结构化数据,往
学位
点云可用来描绘物体在三维空间中的形状,被广泛应用于自动驾驶、质量检测、结构可视化以及动画渲染等领域。随着深度学习技术的发展,人们逐渐将视角从二维视觉转向三维视觉,点云由于能够最大限度地保留物体的几何信息,因此成为研究该问题的首选。近些年来,在大规模三维点云上展开的深度学习工作已经取得了巨大的进展。然而,点云中专门面向小目标的语义分割仍然是该领域的挑战之一,许多问题亟待解决:(1)小目标所承载的语义
学位
联邦学习作为当下人工智能技术的热点,可以解决“数据孤岛”问题。然而,现有的联邦学习方案面临一些问题,例如,如何保证上传的模型更新的隐私,如何避免不可靠的模型更新,以及如何鼓励参与者贡献他们的资源。为了解决这些问题,本文制定了相应的设计目标,提出了一种隐私保护的评估机制来选择可靠的模型更新。考虑到参与者不可能无条件的贡献自己的资源参加联邦学习,本文制定了相应的设计目标,设计了一种基于强化学习的公平激
学位