基于机器视觉的非接触式通孔薄壁件间距测量方法研究

来源 :上海工程技术大学 | 被引量 : 0次 | 上传用户:melaniezhao
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
通孔薄壁件是现代交通动力系统及航空航天领域中常见的异形结构件,诸如新能源汽车燃料电池电极、发动机缸体和和航天推进器栅极组件等。通孔薄壁件间距是影响的动力系统性能的关键参数,现有的人工测量方法可靠性较差,基于机器视觉的接触式测量方法也存在一致性低、效率不高的问题。本文以航天推进器中的栅极组件为例,提出了一种基于机器视觉的非接触式间距测量方法,针对人工测量和传统视觉测量方法存在的问题,展开通孔薄壁件间距测量方法的研究,具体研究内容如下:(1)建立平面通孔薄壁件与平行光源入射光线夹角和薄壁件间距的数学模型。利用通孔薄壁件的孔径结构特征和光线传播特性,通过通孔投影面积确定薄壁件间距。分析球面薄壁件表面极限测量曲率推导不同曲率半径的球面通孔薄壁件单个孔位的形心位置函数,为后续间距测量方法实现提供理论基础。(2)处理采集到的通孔投影图像,结合灰度值分布情况分析现有的阈值分割方法,使用拉格朗日非线性分解理论对图像直方图进行迭代分解,选择最优阈值,根据最大类间方差优化目标函数,提高通孔投影面积的采集精度。(3)研究通孔投影的最优边界提取算法,提出最小点搜索法用于灰度值多阈值分割改进,与传统的多阈值图像分割算法进行对比。(4)搭建机器视觉的非接触式通孔薄壁件间距检测试验平台,硬件平台包括运动控制模块、机器视觉光学测量模块;基于QT平台开发设计上位机软件,集成视觉处理模块,实现通孔薄壁件间距的自动测量。本文针对离子推力器栅极组件间距测量的实际需求,提出基于机器视觉的薄壁件间距非接触式测量原理,搭建试验平台,试验结果表明,该系统运行稳定,满足离子推力器栅极组件间距测量的精度要求。
其他文献
内丝接头作为汽车刹车系统的构成部分,是保证刹车系统有效且稳定制动的关键零件。生产企业对内丝接头出厂前的质量检测有着严格的要求,然而传统的人工检测精度差、漏检高且检测标准一致性难以保证。为此本文针对内丝接头外观缺陷检测的问题,利用机器视觉技术对内丝接头转体完整性检测、凹槽异物检测以及紧固套表面缺陷检测的算法展开研究。主要的研究内容为:(1)在图像采集方面,根据转体、凹槽以及紧固套这三个待检测区域以及
学位
纳米晶金属材料具有高的强度但是塑性却较差,其原因是位错匮乏。纯铜经表面纳米化处理,表面纳米晶展现了大塑性,但是其弹性应变较低,经计算只有0.5%。本课题组前期对马氏体CuZnAl(M)合金进行了表面纳米化处理,制备了邻接相变基体的纳米晶金属复合材料粗晶M/纳米晶α-CuZnAl合金板材,发现马氏体CuZnAl合金表面α相纳米晶的弹性应变(3.2%)显著高于粗晶α/纳米晶α-CuZnAl合金表面α相
学位
与锂离子电池相比,锂硫(Li-S)电池具有成本低、能量密度高(2600 Wh kg-1)、性能优越等优点,是公认的极具发展前景的下一代电池。然而,由于硫导电性差、嵌锂后显著的体积膨胀、可溶解多硫化物(Li PSs)的穿梭效应,以及Li PSs中间体转化缓慢等问题,Li-S电池的商业化一直受到阻碍。目前最普遍的解决方法是利用碳材料在物理上限制Li PSs的穿梭效应,同时以其良好的吸附能力和导电性来提
学位
近年来,随着化石能源等不可再生能源的枯竭,可再生能源的高效利用成为人们关注的重点。在各类可再生能源储能装置中,锂离子电池因其绿色清洁等诸多优点发展迅速。目前,随着各类高容量负极材料的研制成功,制约锂离子电池发展的关键是正极材料的性能。近期,可发生多电子转移反应的金属氟化物正极材料广受关注。在各种金属氟化物中,氟化铁具有理论容量高、成本低等特点。但是氟化铁中的离子价键作用强导致其导电性差,且转化反应
学位
TC4钛合金是一种中强度α+β型钛合金,具有耐腐蚀性好、密度低、比强度高等优点,是应用最广泛的航空紧固件材料。冷镦成形钛合金航空紧固件可以提高生产效率和成形精度,同时降低加工成本。但在室温条件下,TC4钛合金的成形性极差,极易出现断裂现象。目前,热镦成形TC4钛合金紧固件的方法应用广泛,但热镦成形紧固件存在较大温升,影响材料性能。温镦成形TC4钛合金紧固件,不仅效率高、能耗低、成形零件的力学性能良
学位
质子交换膜燃料电池是一种新能源电池,其内部包括流体流动、气体扩散、催化层中化学反应、电池内部温度传递。本文通过使用COMSOL Multiphysics中的二次电流、布林克曼方程、浓物质扩散和固体传热模块模拟质子交换膜燃料电池在电场-流场-浓度场-温度场多场耦合情况下,电池内部物质传递以及电化学性质。本文从以下几个方面对质子交换膜燃料电池进行研究。(1)建立了一个单相非等温直流道质子交换膜燃料电池
学位
目前碳纤维增强尼龙6复合材料因其高比强度、自润滑性等特点得到广泛的应用,但碳纤维表面光滑且疏水,与尼龙产生的弱界面影响材料性能,制约着进一步的开发与应用。大量研究通过物理和化学的方法对纤维表面改性提高了材料的界面剪切强度(IFSS),增强了机械性能。但仍存在改性方法复杂、生产效率不高、改性增强效果难以预测等问题,因此碳纤维的改性工艺与复合材料的性能预测需要进一步研究。本工作通过电还原接枝的方法,在
学位
本文将金属有机骨架材料ZIF-11,Ui O-66-NH2和Ui O-66-NH3+Cl-与亲水性聚合物醋酸纤维素(CA)和尼龙6(PA6)复合,制备了三种新型的混合基质膜(MMMs),分别为CA/ZIF-11 MMMs、PA6/Ui O-66-NH2MMMs和PA6/Ui O-66-NH3+Cl-MMMs。采用扫描电镜、X射线衍射技术、BET比表面积分析、傅里叶变换红外光谱、紫外-可见光光谱、热
学位
多孔介质作为一种常见的材料,由于其独特的结构和特殊的性能,广泛存在和应用于生产和生活的各个场景中,因此也得到了研究者的广泛关注。对于多孔介质的研究,也多集中在多物理场耦合方向。在研究过程中,研究者仔细研究了多孔介质耦合内在机理,建立了众多弱耦合场的控制方程。这些控制方程使得场与场之间耦合效果减弱,计算过程比较复杂且精度差。为了解决这个问题,提出了强耦合控制方程。强耦合控制方程将耦合作用直接构造到控
学位
各向异性材料在许多现代工程材料领域和加工制造领域中得到了广泛的应用,因此关于各向异性材料传热行为的研究就显得十分重要,这也为机械电子设备热分析提供了理论依据。在实际研究中,各向异性材料的热传导问题通常采用理论分析、实验检测、数值仿真等方法进行研究。而当求解区域和边界条件复杂时,理论分析和实验检测处理起来比较困难甚至不可能,而数值仿真却能迎刃而解。因此,很多研究者采用不同的数值模拟方法对此类问题进行
学位