B4C/SiC和B4C/TiB2陶瓷复合材料的制备、组织及力学性能的研究

来源 :东北大学 | 被引量 : 0次 | 上传用户:mathan
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
碳化硼陶瓷作为军事防弹、航空航天、耐磨损耐腐蚀零部件等方面都有十分广泛的应用范围,具有密度低、熔点高、硬度高、耐高温、耐腐蚀性能以及良好的中子吸收性能等特点,但烧结过程的困难以及相关室温下力学性能的不足限制碳化硼陶瓷的进一步应用。本文通过常压烧结和热压烧结两种工艺制备碳化硼基陶瓷复合材料,论文详细研究了 B4C/SiC和B4C/TiB2陶瓷复合材料的制备、组织和及力学性能,论文结果对于碳化硼基复合材料增韧强化设计、以及对碳化硼复合材料的生产和应用有一定的理论指导意义和应用价值。本文首先采用常压烧结工艺制备B4C/SiC陶瓷复合材料,研究了烧结助剂YAG、Ti和C以及烧结温度对材料组织与性能。结果表明:少量添加YAG有利于B4C/SiC复合材料的致密化,当添加5%YAG时,材料最大相对密度为95%,YAG含量增加或烧结温度增加时均不利于材料的致密化,主要原因为YAG与B4C反应生成了可挥发的氧化物,烧结后在基体上留下许多气孔,从而降低了材料的致密度和力学性能;添加3%Ti有利于B4C/SiC复合材料的致密化,但烧结温度过高或Ti添加量较多时,在高温下熔融Ti在基体反应,形成了特殊的型壳结构,并在基体中产生了孔洞,使材料的抗折强度最高只有204MPa;添加3.5%C能还原碳化硼和碳化硅表面的氧化层,降低其表面能,促进烧结致密化,在2050℃烧结时复合材料的抗折强度和断裂韧性分别达到294 MPa和4.3 MPa·m1/2。其次,以B4C和TiO2、TiC粉末为主要原料,在1500℃×60min(真空)+1900℃×60min(真空)的热压烧结工艺下制备B4C/TiB2陶瓷复合材料,研究了 TiB2含量对B4C/TiB2陶瓷复合材料组织与性能的影响。结果表明:原料中的TiO2或TiC可以与碳化硼基体发生原位化学反应形成TiB2颗粒,原位生成的TiB2颗粒对于B4C陶瓷复合材料具有增强补韧的效果,其中添加剂TiC 比 TiO2的效果更佳,这是因为TiO2会引入O,对于烧结致密化不利;当TiC加入量为10%时,B4C/TiB2陶瓷复合材料的抗折强度和断裂韧性分别达到589 MPa和5.24 MPa·m/2。
其他文献
近年来,金属材料的发展已经趋于一个平缓的状态,随着人类社会的发展,人们在生活质量方面提出了更高的要求,科学技术的发展对于材料提出了更多的需求。因此,人们正在通过各种方法途径他来改善材料的性能。多主元系合金作为一种新型的合金(包括中熵合金和高熵合金),与传统合金相比具有许多优异的性能,如高硬度、高强度以及耐腐蚀性能。典型的以CoCrNi系为基础的具有单相面心立方结构的中熵合金,因其成分简单、具有优异
在日常生活及工程领域中随处可见绕一点做往复摆动的单摆结构,此类结构往往起着远距离的连接、运输与支撑作用。由于工作环境的多样性、复杂性以及系统自身所存在的干扰,单摆结构的摆动现象不仅会直接影响工作效率,造成工作部件的损坏,甚至在某些情况下会对人身安全产生威胁,从而造成重大经济损失以及人员伤亡事故。因此,开展对单摆结构的摆动快速抑制研究具有重要的实际工程意义。本文主要完成以下几方面内容:(1)利用一个
现代战争中装备隐身的问题日益突出,除战机和潜艇等常规隐身装备外,越来越多海洋应用装备对隐身需求与日俱增,发展兼具隐身防腐性能的功能涂料具有重要意义。现阶段,舰船上采用的方法为在基体上依次涂覆防腐底漆和多道吸波厚涂料。这种体系设计,在海洋环境中长期服役会使得吸收剂失效,进而导致吸波性能下降;同时多层异相结构导致涂层层间匹配性差、缺陷较多,涂层过早失效。本文基于“吸波-防腐功能一体化”的思想,通过在基
Ti600是具有我国自主知识产权的近α型高温钛合金,可在600℃下长期使用,有望成为新型航空发动机用关键部件材料。苛刻的服役条件对Ti600合金的高温性能提出了更高的要求,尤其是服役状态下的组织稳定性和抗蠕变性能。在Ti600合金的研究中,长期时效对其组织稳定性的研究未见报道,考察Ti600合金在长时服役条件下的组织稳定性,系统的探究合金在长期时效过程中的组织演化规律及其对高温性能的影响机制具有非
随着高档汽车、家电等下游行业对冷轧带钢质量要求的提高,带钢的横截面形状和平直度已成为冷轧带钢最重要的板形质量指标。而冷轧板形受轧机机型、工艺参数和轧制状态等多个非线性、强耦合、时变性强的因素影响,板形调控机理复杂,建立一套高精度的板形预测数学模型具有很强的现实意义。本文采用三维弹塑性有限元建模的方法对轧制过程工艺参数对板形的影响规律进行了系统性的研究,并在此基础上开发了基于轧制机理和现场生产数据的
2011年福岛核事故中,锆合金燃料包壳在高温事故工况下与水蒸气反应释放大量氢气导致反应堆爆炸,造成了巨大损失。此后国内外学者致力于寻求锆合金替代材料,其中FeCrAl合金具有较好的高温抗氧化性和高温耐蒸汽腐蚀性,被认为是新型耐事故核燃料包壳的最佳候选材料。添加适量Nb元素的FeCrAl合金在退火过程中会析出细小弥散的Fe2Nb-Laves相,在高温条件下有效阻碍晶粒长大,提高合金高温强度。但是硬质
钛及钛合金具有各种优良性能:密度小,比强度与比模量高,耐腐蚀,耐高、低温性能好,无磁,无毒,具有良好的生物相容性,是一类重要的结构材料,其中典型的钛合金为TC4(Ti-6Al-4V),但是钛和钛合金的应用很大方面受限制于其较高的生产成本。本文以氢化钛粉末和铝钒中间合金颗粒为原材料,运用机械球磨混粉,粉末模压压坯,气氛保护下粉末压坯挤压锻固结工艺成功制备出低成本高性能的TC4钛合金样品。借助光学显微
由于移动虹膜图像清晰度较差,纹理损失严重,传统虹膜识别算法无法达到预期的性能。为了解决这一问题,本文以包含更多信息的眼周识别作为主体,提出融合眼周特征和虹膜特征的移动终端眼周识别算法。本文主要工作如下:首先,对传统移动端虹膜识别算法进行改进,提出基于特征融合的移动终端虹膜识别算法。通过大量调参,寻找互补的2D Gabor特征和OM特征。通过联合贝叶斯分类算法将二者融合,输出两张虹膜图像是否为同一类
随着日韩、欧美对节Ni和高Mn低温钢材料的不断开发以及我国对低温储罐用钢的大量需求,研究低成本低温钢,并分析强韧化机理十分必要。本文针对Ni系低温钢成本高及工艺复杂的问题,通过以Mn代Ni的思路,设计出两种中锰低温钢:5Mn、5Mn-1.5Ni钢。并采用QLT工艺进行处理,获得了室温组织为板条马氏体、铁素体及逆相变奥氏体且具有优良强度及低温韧性的薄钢板。分析热处理过程中的组织演变与力学性能规律,确
MCrAlY型涂层(M=Co,Ni)常用于涡轮叶片系统,涂层的寿命对设备的安全运行至关重要。本文利用深度学习方法,将图像处理技术运用于NiCrAlY涂层/Ni基高温合金服役过程中微观形貌的图像特征信息识别、检索及图像特征信息与涂层服役寿命间动态演化规律定量关系模型的搭建。本工作强调将深度学习的方法用在材料领域的前期探索,丰富了 NiCrAlY涂层/Ni基合金数据库,实现了材料图像特征信息的识别和涂