强激光场中涡旋光子的辐射概率

来源 :上海师范大学 | 被引量 : 0次 | 上传用户:lingling111
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
自1992年L.Allen等人发现了拉盖尔-高斯光携带有光子的轨道角动量(OAM)以来,涡旋光场及其轨道角动量特性逐渐引起光学界的广泛关注并成为目前光学研究前沿之一。涡旋光的轨道角动量已作为一种全新的光子自由度被广泛应用于各领域,为解决许多基础和技术问题提供了新的研究工具。近年来,科研工作者对轨道角动量的研究逐渐延伸到了X和γ波段,目前国内外已提出了利用线性、弱非线康普顿散射产生涡旋伽马光的方案,并深入研究了初态涡旋光子动量张角对辐射光子角分布的影响,然而在弱光条件下产生的伽马源,通常有亮度低、角动量密度低等缺点。随着激光技术的不断进步,现阶段人们已经可以在实验室产生强度在1022W/cm~2左右、脉冲在飞秒量级的超短超强激光脉冲。用这种强度的激光脉冲与带电粒子相互作用时,电子会在瞬间被加速到相对论速度,从而进入量子电动力学(QED)的研究范畴。在强场情况下得到的涡旋光子角动量密度更大、能量更高,在各方面有着更好的应用前景,然而现在对于强场中辐射涡旋光子的研究较少,且已有的研究结果中偏向于分析产生的涡旋光子的集体性质,对于单个涡旋光子的辐射、极化和轨道角动量等性质的探究还不够。因此,本文从涡旋光子的强场辐射出发,以得到一个适用于强场情况下的涡旋光子辐射的概率公式,从而为分析高能涡旋光子相关特性提供研究工具。文章首先介绍了研究背景和用到的主要方法,包括Baier-Katkov用量子算符得出的半经典辐射概率方法、局域稳恒场近似、Jentschura等人提出的用平面波态表示涡旋光子态的方法等。然后我们以Baier-Katkov半经典方法为基础,考虑涡旋光子的动量张角和角动量在传播方向的投影,利用局域稳恒场近似和涡旋态的表示方法,以及Bessel函数的相关性质进行计算,得到了适用于强场的涡旋光子辐射概率公式。最后利用上面推导出的公式数值计算并分析了辐射概率受电子和光子极化的影响,以及在末态电子和光子极化取平均值时,辐射光子角动量分量随动量锥角与光子能量的变化规律。这里得到的辐射概率发展了非线性康普顿过程中涡旋光子产生的一般理论,公式形式比较简洁适用于强场QED数值模拟,对于研究涡旋伽马光在强场中的OAM特性、空间角分布与驱动光的关联有一定帮助。
其他文献
太赫兹波(0.1-10 THz)凭借其安全性好、瞬间带宽大、穿透性强等特点在无损探测、空间通讯、大气研究等领域大放异彩。作为太赫兹技术的“眼睛”——太赫兹探测器承担着实现光电转化的重要作用,其中的光敏材料则起到了“视网膜”的作用,直接影响着探测器光电转换性能。现阶段的研究成果预示着以InGaAs、HgCdTe为代表的传统的光敏材料已经无法满足太赫兹探测器在室温下高灵敏度、快速响应、阵列集成等方面的
学位
高频超声换能器以其优异的成像质量在血管成像、眼科成像和小动物成像等医学领域和检测领域具有重要应用。换能元件作为超声换能器中的核心部分,直接影响着换能器的性能,在这一方面,1-3复合材料表现出了巨大优势。而随着环境保护的理念逐渐得到人们的重视,使用无铅压电材料来替代铅基压电材料显得尤为重要。本项研究以(1-x)Na0.5Bi0.5Ti O3-x Ba Ti O3(NBBT)晶体为研究对象,从晶体的微
学位
高次谐波是强光驱动原子、分子过程中产生的一种高频相干辐射。它是阿秒量级超短脉冲的重要来源,也是获得短波长光源的重要手段。本论文采用全量子化的非微扰形式散射理论,研究了强激光场驱动原子生成的高次谐波的统计性质,开阔了高次谐波研究的视野,对拓展高次谐波在传感、高分辨率成像和量子通信等领域的应用有一定参考价值。本论文的主要研究内容及结果如下:(1)推导了电子在相干态激光场中运动的Volkov态。利用类薛
学位
碳化硅(SiC)作为第三代半导体材料因其耐高温、耐高压等优异性能被视为未来发展适用于极端环境的器件所不可或缺的材料之一。金属-半导体接触质量直接影响器件的应用,其中接触中的肖特基势垒不均匀(SBI)依然是近几年来研究的热点问题。之前的研究从微观角度讨论了SiC SBI问题,并指出退火形成的六角凹坑带来了低势垒区。本论文通过密度泛函方法(DFT)计算、动力学蒙特卡洛(k MC)模拟等方法,进一步从原
学位
学位
能源的日益紧缺和环境的污染问题促使以化石能源为基础的能源结构向以清洁能源为基础的能源结构转移。发展以氢气为基础的清洁能源时,氢气的分离提纯工作是氢能产业所必不可少的一环。与传统的氢分离技术相比,钙钛矿型致密陶瓷氢分离膜具有使用方便、氢气气氛下膜结构稳定、材料廉价和节约能耗等优点,已经引起了研究者的注意。致密陶瓷氢分离膜可以从工业规模的蒸汽重整产生的混合气体中分离和净化氢气。但是,目前的致密氢分离膜
学位
对超短超强激光的研究和控制提高了人类对微观方面的理解,以及对物质世界的改造能力。随着超短超强激光技术的迅速发展,激光的聚焦强度大幅度增加,目前实验室中能产生的激光强度高达1022W/cm~2,大大超出了原子的内部场强。激光与等离子体相互作用时有质动力作用凸显,且需要考虑相对论效应,这使得超强激光与等离子体作用产生丰富的非线性物理现象,如激光频移、高次谐波的产生(High-order harmoni
学位
近几年,超材料和超表面因其性质不再拘束于自然环境中的天然材料固有性质,可以根据实际要求设计加工的特点,受到了众多研究者的关注。这种具有新的独特电磁特性的人工电磁材料,展现出对电磁辐射控制和操纵的强大能力。所以在低频波段的太赫兹领域,广泛利用了超材料和超表面的优良特性,对太赫兹波进行多种调控。不仅如此,通过巧妙设计的金属结构在超材料中的电响应和磁响应,可以实现新的光学特性,通过人工设计的超材料在太赫
学位
在前沿生化及物质科学研究领域,为了对原子、分子超快动力学的物质结构进行研究,需要进行阿秒时间尺度分辨的诊断,这需要使用阿秒电子束或由其产生的阿秒辐射脉冲,阿秒电子束在超快电子成像、超快电子衍射和超快光谱学等领域拥有着巨大的应用前景。本文针对如何实现基于激光尾波场的单阿秒电子束产生进行了探究,通过将电子束注入到尾波场的零相位附近,控制激光和注入电子束的相关参数,有望获得持续时间长且脉宽可调谐的高品质
学位
光与原子相互作用的理论在量子光学中具有核心地位,以此为基础的实际应用吸引了很多研究人员的关注。目前,基于涡旋光与原子相互作用的研究不仅发现了许多新奇的物理现象和物理规律,而且开拓了以涡旋光为基础的诸多应用领域,如量子调控、高精密测量和量子信息处理等。涡旋光束的等相位面呈螺旋形结构,其光子携带轨道角动量,它与原子的电偶极相互作用和电四极相互作用都呈现出异于传统光与原子相互作用的物理规律。特别是原子在
学位