【摘 要】
:
传统化石能源的日益紧张和全球环境污染的逐渐加剧,使光伏、风力等新能源的开发和利用受到世界各国的重视。光伏、风力、燃料电池等单一新能源发电通常存在电力供应不稳定、不连续、随气候条件变化等缺陷,为提高发电系统的稳定性和灵活性,实现新能源的优先利用和充分利用,需要采用多种新能源联合供电的分布式发电系统。本文在论述了单输入直流变换器型、多输入直流变换器型两级多输入逆变器发展与现状的基础上,提出了一种多绕组
论文部分内容阅读
传统化石能源的日益紧张和全球环境污染的逐渐加剧,使光伏、风力等新能源的开发和利用受到世界各国的重视。光伏、风力、燃料电池等单一新能源发电通常存在电力供应不稳定、不连续、随气候条件变化等缺陷,为提高发电系统的稳定性和灵活性,实现新能源的优先利用和充分利用,需要采用多种新能源联合供电的分布式发电系统。本文在论述了单输入直流变换器型、多输入直流变换器型两级多输入逆变器发展与现状的基础上,提出了一种多绕组分时供电Buck周波变换器型单级多输入高频环节逆变器,并对其全桥电路拓扑、单极性移相主从功率分配SPWM能量管理控制策略、原理特性、多输入占空比表达式和电路参数设计等关键技术进行了深入的理论分析、仿真与实验研究,获得了重要结论。所提出的多绕组分时供电全桥Buck周波变换器型单级多输入高频环节逆变器电路拓扑,是由输入滤波器、多个单输入单输出高频逆变电路、多原边绕组单副边绕组高频变压器、周波变换器和输出滤波器依序级联构成;所提出的单极性移相主从功率分配SPWM能量管理控制策略是通过多个单输入单输出高频逆变电路右桥臂与左桥臂之间的移相生成双极性三态多电平SPWM波,周波变换器将其解调成单极性三态多电平SPWM波并且在多原边绕组单副边绕组高频变压器输出的双极性三态多电平SPWM波为零期间进行换流,多路输入源主从功率分配并实现不同供电模式之间的平滑切换和输出电压的稳定。深入研究了多绕组分时供电全桥Buck周波变换器型单级多输入高频环节逆变器的高频开关过程、输入输出关系、输出电压直流分量抑制和功率开关关断电压尖峰等关键问题,推导了多路输入源占空比表达式并给出了单级多输入逆变器的外特性曲线,采用状态空间平均法建立了单级多输入逆变器的小信号模型并通过添加解耦矩阵的方法实现控制环路解耦以设计满足两种供电模式的闭环调节器,推导了输入滤波电容、多原边绕组单副边绕组高频变压器、输出滤波器等主要电路参数的设计准则。采用所提出的电路拓扑和能量管理控制策略,设计并研制成功1k VA200-360V/220V50Hz AC多绕组分时供电全桥Buck周波变换器型单级多输入高频环节逆变器样机,其PSIM仿真和实验结果表明,所提出的多输入逆变器实现了高频变压器在一个高频开关周期内双向对称磁化、周波变换器零电压换流,具有单级功率变换、输出交流负载与多输入源高频电气隔离、多输入源之间高频电气隔离、多输入源在一个高频开关周期内分时向负载供电、输入电压配制灵活、变换效率高、体积和重量小、输出电压纹波小、成本低、可靠性高等优良性能。
其他文献
燃料电池(Fuel Cell)是一种新型电化学电池,其发电方式高效无污染,被认为是能源未来的发展趋势。其中,固体氧化物燃料电池(SOFC)以其全固态结构和不使用贵金属作催化剂的优势受到世界各国的重视。目前SOFC发展的最大阻碍是运行温度过高,这会导致启动缓慢、材料老化、界面扩散、性能退化等一系列问题,所以推动运行温度中低温化是电池发展的当务之急。质子导体氧化物电解质替代氧离子导电电解质,使工作温度
随着科技的发展,人类对于能源的需求日益迫切,然而,石油、煤炭等不可再生资源的储量有限,因此发展新的可再生能源以及可储存和转换能源的储能装置的需求也越来越大。超级电容器是近几年来研究热点比较高的储能装置,它具有许多传统电池不可比拟的优点,比如功率密度高、充电时间短、循环稳定性好和安全性高等。然而相对于电池而言,超级电容器的能量密度较低,探索提高超级电容器能量密度至关重要。根据能量密度计算公式,提高电
多相感应电动机具有高效率、高可靠性、易于实现低压大功率驱动等特点,被广泛地应用于舰船电力推动系统。由于大容量舰船变速系统惯性较大,对系统的快速响应要求较低,而开环控制系统设计简单、控制方便,故适用于多相感应推进电动机起动与调速。本文以大容量舰船多相感应推进电动机为研究目标,采用小容量九相感应电动机样机为具体对象,对多相感应电动机的开环控制调速系统进行研究,具有重要的理论意义与实用价值。针对3套三相
直接液体燃料电池(DLFCs)具有启动速度快、工作温度低、能量密度高,燃料贮存、运输方便的特点,在电源以及电动汽车等方面有巨大的发展应用潜力。然而,DLFCs阳极催化剂如钯(Pd)的活性有限、稳定性差难以满足实际应用需求。因此,构建新型高活性和高稳定性的阳极催化剂具有重要的研究价值。材料的表面结构与催化剂的电催化性能密切相关。近年来,纳米尺度上的形貌控制备受关注。超薄二维纳米片具有独特的电子性能和
纳米发电机是一种新型的能量采集器,作为近年来新兴的能源转化技术成为人们的研究热点。它通过摩擦带电、静电感应的原理广泛应用于环境中机械能采集和电能转换,在自供电技术以及智能化传感领域具有极大的发展潜力。响应国家循环发展的指导意见,本课题将纳米发电机与环境问题相交叉,利用环境中废弃塑料袋为基础制作塑料摩擦纳米发电机。其具有自供电的优势,且环境适应性良好,不仅可以降低环境污染,而且在一定程度上可以缓解能
与三相驱动系统相比多相永磁同步电动机在舰船电力推进方面具有转矩脉动低、控制自由度多、易于在低压供电情况下实现大功率拖动等优势。同时由于舰船推进系统惯性大,对调速系统的动态响应要求不高,使得其开环控制成为了可能。本文以船用大容量九相永磁同步电动机为目标电机,用小样机作为具体研究对象,其除容量按比例大为缩小外,结构形式与实际大容量电机基本一致。针对所研究电机在采用开环控制时因转子阻尼不足、造成电机起动
自人类社会开始发掘利用化石燃料,社会生产力不断发展进步,随之而来的是社会生产力、经济科技的发展进步对能源的需求越来越大,大量化石燃料的使用导致了二氧化碳等温室气体的排放以及有害物质的产生,造成了全球气温上升、环境污染。21世纪以来,人类社会越来越重视开发利用清洁能源,而作为清洁能源中储量最为丰富、分布最为广泛、利用最为直接的太阳能,受到了科研人员的广泛关注,一直是近年来的研究热点。光谱选择性太阳能
区域综合能源系统(District-level Integrated Energy System,DIES)在现代能源体系中占有重要地位,且DIES因多能流耦合、多系统融合的形态使负荷特性多变,影响因素复杂,非线性化强。为了更好的保持DIES供能与需求的动态平衡,需要更精确的DIES多元负荷短期预测。文章针对DIES的特点,进行DIES多元负荷短期预测研究。首先对DIES负荷进行特性分析,采用灰色
无人机在电力巡检和边防巡逻等领域得到了广泛的应用,这不仅节约了用人成本且保障了工作人员的安全,然而无人机的续航能力不足,且部分户外地区充电条件有限,给无人机的工作带来了很大的不便。针对以上问题,本文对无人机光伏供电无线充电系统进行了研究,主要做了以下工作:首先,对光伏供电系统进行了研究。在传统固定步长扰动观察法的基础上提出了反正切变步长扰动观察法,该方法在提高最大功率点跟踪速度的同时减小了最大功率
随着经济的迅猛发展和市场竞争的加剧,项目管理已经融入到社会生活的方方面面。特别是对于企业来说,在激烈的市场竞争中,一个项目的成败甚至可以决定企业的生死存亡。在当今的信息系统实施领域,由于人力资源已经成为项目的核心资源,项目参与人员的工作积极性、工作效率等对项目的成功有着至关重要的作用。传统的项目进度管理方式,如关键路径法和计划评审技术等,在规划项目时主要根据工程项目各个工序之间的逻辑关系寻找并制定