椴树蜜素B的化学合成研究

来源 :华南农业大学 | 被引量 : 0次 | 上传用户:mikoo999
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
椴树蜜是我国唯一的特等蜂蜜,富含有机酸、多酚类和黄酮类物质,具有抗菌、抗氧化、抗炎、抑制肿瘤细胞等生物活性。椴树蜜品质高,价格昂贵。椴树蜜素B是椴树蜂蜜中的信息物质,化学名称为4-(2-羟基-2-异丙基)环己基-1,3-二烯-1-羧酸。可以通过对某品牌的椴树蜜中椴树蜜素B的含量的测定,来鉴别是否为真实的椴树蜜。合成椴树蜜素B的标准品,可以应用于椴树蜜的鉴别。本文研究了椴树蜜素B的化学合成。通过逆合成分析及查阅相关文献,设计了两条合成路线。路线一:(1)以紫苏醇为起始原料,首先将伯羟基保护;(2)在酸性条件下对烯烃进行水合反应得到叔醇产物;(3)将叔羟基进行苯甲酰基保护;(4)再对烯烃α-溴取代反应得到溴代产物;(5)在碱性条件下消去溴化氢得到环己基-1,3-二烯结构;(6)脱去苯甲酰保护基;(7)伯羟基氧化为羧基;(8)脱去叔羟基保护基得到目标产物。路线二:(1)以环己基-1,4-二甲酸为起始原料,与氯化亚砜反应生成环己基-1,4-二甲酰氯;(2)环己基-1,4-二甲酰氯与BPO和NBS反应使酰氯羰基α-溴取代,然后再与甲醇反应,生成1,4-二溴环己基-1,4-二甲酸二甲酯;(3)以碳酸钾为碱1,4-二溴环己基-1,4-二甲酸二甲酯脱去两分子溴化氢,生成环己基-1,3-二烯-1,4-二甲酸二甲酯;(4)甲基溴化镁对环己基-1,3-二烯-1,4-二甲酸二甲酯亲核加成,生成4-(2-羟基-2-异丙基)环己基-1,3-二烯-1-甲酸甲酯;(5)4-(2-羟基-2-异丙基)环己基-1,3-二烯-1-甲酸甲酯在碱3下水解,盐酸酸化生成椴树蜜素B。路线二只需五步反应,其在前三步反应中,只需对第三步的产物分离纯化,三步反应总收率为35%。第四步亲核加成反应收率为35%,第五步在碱存在下室温进行水解反应,盐酸酸化,反应收率为90%。并以总收率11%得到椴树蜜素B。经Sci Finder检索,尚无文献报道椴树蜜素B的合成。第二步羧酸羰基α-溴取代反应是路线二的关键步骤,将Hell-Volhard-Zelinsky反应中的三溴化膦和溴素改为先用氯化亚砜生成酰氯,然后NBS(N-溴代琥珀酰亚胺)和BPO(过氧化苯甲酰)进行溴代反应,得到的产物收率提高5%。经拓展实验,可应用于含有α氢的羧酸羰基α-溴代反应。
其他文献
骨缺损是骨科临床最常见的疾病之一,骨缺损修复重建一直是国际临床难题。因此,组织工程作为一种基于仿生理念利用多孔生物支架来修复损伤或缺失组织结构与功能的有效方法成为了研究热点。3D打印提供大孔与Pickering乳液模板法提供微孔的多尺度孔支架由于优异的性能使其在组织工程中具有重要的运用价值。本课题结合Pickering乳液模板法与3D打印技术制备具有连通多尺度孔的无机纳米粒子/可生物降解聚合物生物
学位
随着增材制造技术(快速成型技术,简称RP,或称3D打印)的应用越来越普及,3D打印用的树脂的研究也越来越受到关注。含硫树脂因为其低氧阻聚和固化速度快的特点,在3D打印应用这方面具有很大的潜力。另外,最近出现的DLP数字投影成型技术因为具有分辨率高、精度高的特点,且其机器的成本价格更低,更适用于各种研究的方面。利用DLP数字投影成型技术结合改性无机纳米粒子的优秀化学性质和含硫树脂优秀的固化性能制备出
学位
社会发展,文明进步,大量的重金属离子被超标排放到了自然环境当中,这对人们生活的“舒适圈”造成了很严重的重金属污染。重金属经环境中的动植物富集,不仅对动植物造成严重的影响,也可能会经生态食物链最后被人类吸收,造成人体内重金属富集。因此对于环境中的重金属污染研究已成为众多学者研究的热点。而寻找一种能够快速高效、方便检测重金属离子的技术也成为了重点研究课题。电化学技术的便携性可以实现实时实地检测,相对于
学位
碳点作为一种新型的零维碳纳米材料,由于其独特的光致发光特性引起了人们的广泛关注。目前,已经有很多研究报道了基于碳点的室温余辉发光及其在光学防伪和信息保护、温度/离子传感、生物成像等领域的巨大应用前景。但是到目前为止,碳点的余辉发光机理还未非常明确。碳点余辉还存在着通用构建策略缺乏、寿命不长、量子效率不高、余辉性能单一等问题。因此,在本工作中,我们将总结碳点余辉的构建方法以及对应的余辉产生的原因。开
学位
氢能作为一种高效、清洁、可再生的新能源备受研究者的关注,但氢气主要来源于化石燃料的蒸汽重整,而电催化和光催化水分解产氢技术最有可能成为今后制氢的主要手段。二硫烯金属配合物具有很好的储存和提供电子的能力,使其在催化产氢方面有着广泛的应用前景。本论文以马来二氰基二硫烯镍([Ni(mnt)2]2–)、马来二氰基二硫烯铜([Cu(mnt)2]2–)和1,2,5-噻二唑-3,4-二硫烯镍([Ni(tdas)
学位
伴随着天然高分子材料的发现与研究,如今已有越来越多的生物医用材料被广泛应用到组织工程当中。其中,高吸水性聚合物材料-水凝胶因其独特的多孔内部结构、良好的柔韧性能以及广泛的材料来源而备受关注。传统的可用于体内植入的生物水凝胶具有力学性能低下,物理化学性能不稳定等缺陷,并且难以针对不同病患的实际情况控制材料的尺寸与形状。近年来兴起的增材制造技术(3D打印)具有数字建模控制成品模型并快速构建的优点,有利
学位
中国作为农业大国,需要大量使用草甘膦除草剂,使用过程中的残留会对人体健康造成严重的危害。光催化是一种可持续绿色化学技术,可以有效地将草甘膦降解成无毒无害的小分子物质或离子。其核心是高效稳定的半导体光催化剂。钨酸铋(Bi2WO6)是一种铋系半导体光催化剂,以其良好的可见光响应性能和高稳定性吸引了众多科研人员的关注,但它自身光生电子-空穴对极易复合限制了其光催化效果。因此,本文通过将Bi2WO6与其他
学位
近年来,纳米网络结构炭(Nanonetwork-structured carbon,NNSC)材料受到越来越多科研人员的关注,因为它们具有孔隙率大、导电率高、物理化学稳定性良好和孔结构可调等优点,在能源储存、吸附分离、能量转换等领域有着广泛的应用。然而,目前NNSC材料仍然面临一些问题的困扰:(1)传统模板法制备NNSC材料时需要预先合成特定纳米结构的模板,不仅工艺繁杂,而且模板与碳源之间的结合不
学位
为了满足日益增长的全球能源需求和缓解由化石能源的使用而导致的环境污染问题,探索新型可再生的绿色清洁能源已经成为世界各国科学家的研究热点。现阶段,从水中产生绿色可再生氢能已经成为未来最具备希望的替代化学能源的策略之一。为了实现这一目标,有三种典型的方法:电化学催化、光电化学和光催化分解水策略。硫化镉(CdS),尤其是一维有序CdS纳米棒阵列材料,不仅能显著提高光的吸收和散射效率,而且能为光生电子提供
学位
彩色半透明有机太阳能电池(Semitransparent organic solar cells,ST-OSCs)因在彩色光伏玻璃、光伏建筑一体化等领域具有广泛的应用前景而成为国际研究的一个前沿热点课题。但该类电池器件中,通常存在高光电转换效率(Power conversion efficiency,PCE)和高透明度无法同时获得等问题。针对这一问题,本论文展开了如下三个方面的工作,具体如下:(1
学位