论文部分内容阅读
随着我国城市化进程不断发展,城市交通问题逐步突显,未来智能交通系统将是解决城市交通需求的最重要方法。智能交通系统的实现,需要对道路交通状况进行实时感知与监测,所幸随着移动通信、卫星定位、物联网、大数据等技术的不断发展,GNSS、RFID、微波、地磁、视频等采集方法已广泛地应用在城市交通领域的信息感知当中。采集设备的多样性,一方面扩展了信息获取的渠道,扩宽了信息收集的广度;但另一方面,也造成了信息量大、异构性强、数据冲突等问题,为交通信息的有效利用带来了困难。信息融合技术的不断发展为解决这一新问题提供了新思路和新方法。目前现有的关于信息融合模型的研究成果大多承袭了军事领域的应用环境和技术特征,在功能界定、信息特征和应用目标等方面与城市交通领域有所交叉却不完全一致,难以适用于城市交通领域的各类应用。因此,本文以城市交通领域为研究背景,开展信息融合关键技术研究,提出适合该领域信息特点和应用需求的融合模型与方法,用以解决城市交通领域多源信息有效融合应用的科学问题。本文的创新性工作主要包括以下几个方面:1.同属性多源信息融合技术研究。针对多源信息之间存在数据冲突,影响融合准确性的问题,提出适用于同属性信息融合的KDS-R模型,将Kalman滤波器的结构和D-S证据理论的算法相结合,并引入证据的静态和动态可靠性分析,实现对经典D-S证据理论算法的改进。仿真数据实验和实测数据实验结果表明,该模型能有效处理数据冲突,与经典D-S证据理论算法相比,融合结果更接近实际情况。2.复杂属性的多源信息融合技术研究。针对具有复杂属性的信息之间难以简单映射、难以进行信息融合的问题,重点选取速度和流量两个交通参数,基于实测交通数据,研究分析了两者之间的关系;提出一种基于关联规则和BP神经网络的CANN融合模型,通过构建并优化速度与流量之间的映射关系,实现两者间的融合计算。实验结果表明,基于该模型的预测曲线相比应用单一流量信息预测的结果,方差更小,与实测流量曲线更接近。3.基于多源信息融合的交通预测模型研究。基于综合分析交通信息特有的时间、空间特征,提出基于WNN的短时交通流预测模型和基于信息融合的公交到站时间预测模型。短时交通流预测模型侧重交通信息的空间属性,通过速度与流量的关联分析,拟合出虚拟断面,进一步细化道路流量描述颗粒度,应用KDS-R模型和CANN模型,结合小波神经网络技术完成预测。公交到站时间预测模型侧重交通信息的时间属性,结合交通流信息判断道路通行状况,再应用KDS-R模型,完成到站时间的预测。实验结果表明,基于WNN的短时交通流预测模型相比基于BP神经网络的预测模型收敛速度更快,预测结果更趋近于实际曲线,误差减少近50%左右;基于信息融合的公交到站时间预测模型有效改善了单一数据对道路突发拥堵情况敏感度低,影响预测准确性的问题,预测效果优于基于前车数据预测的结果和基于历史平均数据预测的结果。4.基于信息融合的公交大数据平台设计与实现。基于上述研究成果,设计并实现了基于信息融合的公交大数据平台,解决了复杂城市交通环境下的数据冲突与信息冗余等关键技术问题,为大数据平台中的公交信息发布服务提供支撑。通过上海市浦东新区82路公交车的实际运行数据,详细展示了大数据平台中公交到站时间模块的运行效果,预测准确率达到96%,优于上海市公交行业管理规范要求,为全面建设浦东地区公交信息服务提供了保障。