超短超强激光驱动的直接电子加速及高品质辐射

来源 :中国科学院大学(中国科学院物理研究所) | 被引量 : 0次 | 上传用户:jyyj
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
高能粒子加速器及高亮度辐射源在基础科学研究、工业生产测试及医疗健康等领域的应用日益广泛,在国民生活中也发挥着越来越不可替代的作用,应用需求持续增强。伴随着超强激光技术的发展,激光等离子体加速及辐射源的相关研究日趋成熟,并取得了一系列里程碑式的进展;由于其加速梯度高、脉宽短、亮度高、源尺寸小等特点,被认为在高能电子加速器、先进X光光源的小型化甚至普及化方面将发挥重要作用。本文介绍了作者攻读博士学位期间在超短超强激光驱动的直接电子加速及X-ray辐射方面开展的研究工作,论文主要分为以下几个部分:第一部分为绪论,作为全文的基础,重点介绍了激光等离子体电子加速的基本原理、重要物理过程及研究现状。具体介绍了超强飞秒激光的产生原理,激光在等离子体中的传输效应及加速结构的产生,不同加速机制的物理原理及电子注入机制等。第二部分是激光驱动的短周期强磁场波荡器及高亮度准单色X-ray辐射源研究。首先论述了激光尾波场加速电子在驱动高亮度Undulator辐射甚至是自由电子激光时电子能散过大这一主要瓶颈问题;利用理论分析结合数值模拟,详细介绍了一种短周期强磁场波荡器方案,说明了短周期强磁场的波荡器在激光尾波场电子束驱动高亮度、可调谐的单色辐射源以及降低自由电子激光Pierce参量及增益长度方面的显著优势。第三部分是啁啾激光直接电子加速理论及实验研究。介绍了激光直接加速的研究现状,重点介绍了啁啾激光脉冲在直接电子加速过程中提升电子电量、电子能量的作用;在理论上分析了啁啾对激光电场的影响,并结合了PIC模拟说明当二阶色散产生最大的啁啾强度时,电子电量及能量获得最佳提升。第四部分是PW激光与近临界密度等离子体相互作用的实验研究。介绍了PW飞秒激光与近临界密度等离子体作用,通过激光直接加速机制利用PW激光的超强电场和近邻界密度等离子体增强对激光的吸收,获得了目前为止最高能量转换效率(10-4)的Betatron辐射;结合PIC模拟,说明了通过控制电子加速过程提升电子能量能够进一步增加能量转换效率,证明了陡峭的等离子体密度梯度对提升电子能量的重要影响。第五部分是实验诊断技术研究,主要涉及超快X/γ射线的聚焦及能谱诊断。具体包括Compton伽马能谱仪、Betatron温稠密物质吸收谱学系统、Von-Hamos晶体谱仪。第六部分是总结与展望,该部分归纳总结了作者博士期间研究工作的重要进展及意义,并对后续研究方向进行了展望。
其他文献
得益于激光冷却原子技术的发展,1995年人们第一次实现了玻色-爱因斯坦凝聚(BEC)。超冷原子为我们能够精确的控制原子相互作用和完全新的参数下研究量子现象和物质的奇异态提供了新的实验平台。在平均场下塌缩的玻色-玻色混合气体,在考虑Lee-Huang-Yang(LHY)修正后,系统形成自束缚的液滴态。在本论文中我们研究了准二维玻色混合气体中的量子液滴的稳定性和相应的相图,以及三组分玻色气体中的Bor
拓扑材料凭借其新奇的物理特性和潜在的物理应用,近几年来吸引了越来越多凝聚态科学家的关注。从最初物理学家们对诸如量子霍尔效应现象的难以理解到现在可以见微知著、硕果累累,拓扑理论的发展经历了一个多世纪的漫长过程。伴随着密度泛函理论的不断发展,计算物理学家们甚至可以高通量的计算和预测成千上万的拓扑材料,为实验和理论提供了丰富多样的研究平台。在本论文中,我将首先在第1章从拓扑理论的发展讲起,介绍相关理论的
非常规超导电性包括铁基超导电性是当代凝聚态物理研究的核心,其超导起源问题尚未解决。研究铁基超导体的正常态物性和超导电性的相互关系对理解这个问题非常重要。铁硫属族化合物FeSe1-xSx和FeSe1-yTey是等电子替代的超导体系,结构简单,但物性丰富(包括超导序、电子向列序、反铁磁序相关物理)。尤其是该体系中没有插入层和额外载流子掺杂效应的影响,因此为研究非常规超导体本征的正常态和超导态物性提供了
以光为信息载体实现信息传递的光通信技术,凭借优异的速度传输性能和强大的信息容量成为现代社会最重要的技术之一。其中,与成熟互补金属氧化物半导体(CMOS)制造工艺兼容的各类有源、无源的硅基光子器件逐渐成为短程光通信中最具前景的技术。在这些光电子器件中,基于光子与物质相互作用实现光信号探测的光子型光电探测器,承担着光电转换的重要功能。目前硅基光电探测器已经广泛应用于可见光谱范围(0.4-0.7μm),
等离子体加速具有不受电离阈值的限制和极高的加速梯度等特性,为实现台面式粒子加速器提供了理论依据。近年来,随着啁啾脉冲放大技术的发展,基于超强超短激光驱动的等离子体电子加速器愈来愈受到人们的重视并已日臻成熟。加速出的相对论电子束可以通过Betatron振荡、逆康普顿散射等过程产生次级的辐射源,该X射线脉冲具有脉宽短、亮度高和源尺寸小等优势,在物理、化学、生物等学科的超快研究方面具有重要而广泛的应用。
由于具有较高的能量密度和较好的循环稳定性,锂离子电池的应用已经深入到了现代社会的方方面面,如交通运输网以及便携式移动电子设备等,使人们的生活变得更加便利。然而随着时代的进步和科技的快速发展,人们对储能器件的要求也越来越高,需要我们继续投入大量的时间去解决锂离子电池体系中所存在的问题,从而使电化学性能和安全性都得到进一步的提升。负极与电解液或固态电解质之间较差的界面稳定性和兼容性便是其中亟需解决的问
自激光诞生以来,更高的光强就一直是光学领域不断探索的重要研究目标之一。随着超短超强激光技术的发展,如今人们已经能够在实验室中产生光强大于1023W/cm2的极端光场。这样的光场能够用于驱动电子质子加速、X射线产生以及光核反应等强场物理研究,加深对物质非线性的理解,成为各国纷纷大力发展的重要实验设施。然而随着飞秒脉冲光强的不断提高,主脉冲之前的预脉冲与自发辐射基底等噪声成分的光强也会随之提升,并严重
复杂钙钛矿氧化物异质结呈现的丰富物理效应是凝聚态物理研究的热点。这种由强关联体系材料组合构成的异质界面可出现多种形式的界面耦合效应,例如电荷转移、轨道重构和跨越界面的化学键等,导致完全不同于单体材料的新奇物理效应,例如氧化物界面二维电子气,二维铁磁性,超导电性和磁性共存以及电场调控Rashba效应等。部分钙钛矿氧化物中存在着有序排列的氧空位缺陷,形成了新的类钙钛矿晶体结构,如ABO2.5钙铁石氧化
合金材料在使用过程中,会不可避免地因各种形式的失效而产生损耗。常见的失效形式包括断裂失效、变形失效、磨损失效和腐蚀失效等。高熵合金由于其设计理念突破了传统合金的设计思路而受到广泛的关注。一些高熵合金表现出的高强度、高塑性、高硬度和高耐磨性等特点,使其成为凝聚态物理和材料科学研究中新的研究热点。但是目前对高熵合金的研究主要集中于力学性能和相的形成及预测方面,关于高熵合金的其它失效行为的关注较少。本文
磁场普遍存在于天文环境中,它与广泛存在于宇宙空间的等离子体(如恒星、星云、星际介质、吸积盘和喷流等)相互作用,产生了丰富的宇宙磁流体现象。从地球物理到太阳物理,从河外星系到星际空间,人们对天文现象的探索激励着磁流体力学的发展和完善。实验室天体物理让人们在实验室环境中即可产生高能量密度物理条件下的极端现象,用于模拟宇宙空间发生的天文现象,尤其对于超过天文观测极限的天文现象是很好的补充。另一方面,实验