航天器相对翻滚目标近距离姿轨控制方法研究

来源 :国防科技大学 | 被引量 : 0次 | 上传用户:hulisheng
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
对失效航天器的在轨修复是当前航天领域的热点问题,而航天器相对翻滚目标近距离姿轨控制是其中的一项关键技术。失效航天器由于没有姿态控制,一般表现为在轨道上自由翻滚,而这为近距离操作带来巨大挑战。论文以此为背景,开展航天器相对空间翻滚目标近距离姿轨控制方法研究。论文主要成果如下:1.针对相对翻滚目标的绕飞与悬停控制问题,分别提出了强迫绕飞控制策略、基于模糊和基于非奇异终端滑模的悬停控制方法。(1)提出了对翻滚目标航天器强迫绕飞的控制策略。将追踪器对目标器的绕飞问题转化为视线瞬时旋转平面内的二维控制问题。采用滑模控制器对视线方向和垂直视线方向的运动进行了控制。(2)采用模糊控制方法实现对翻滚目标的任意位置悬停。推导了追踪器在目标器轨道坐标系中的标称悬停位置和标称悬停速度。将悬停问题解耦为三个通道的二维模糊控制问题,并以某一通道为例进行Mamdani型模糊控制器设计。(3)采用自适应非奇异终端滑模控制方法实现对翻滚目标的悬停。建立了非线性的六自由度耦合的一体化动力学模型。设计了自适应非奇异终端滑模控制器。用自适应调整法来克服系统模型不确定性和外部干扰的影响,不确定性和外部干扰的界限不需要提前知道。2.针对相对翻滚目标的逼近策略问题,分别提出了增广比例导引律、LQR和姿轨一体化控制方法。(1)提出了增广比例导引律控制方法以实现对翻滚目标的逼近。在追踪器视线旋转坐标系上建立了追踪器与逼近点的三维相对运动方程。基于反馈化控制思想,在传统真比例导引律基础上引入对逼近点视线方向的控制,追踪器按照指数衰减的方式对沿逼近点视线方向进行逼近。(2)采用LQR方法实现对翻滚目标的逼近。在目标器轨道坐标系上推导了追踪器以及目标逼近点的标称位置和标称速度。基于线性二次型最优方法(Linear Quadratic Regulator,LQR)设计了LQR控制器。(3)提出了对翻滚目标逼近的姿轨一体化控制方法。考虑逼近过程的安全性,设计了追踪器的标称轨迹,采用指数减速方式对失控翻滚目标航天器实施逼近。综合考虑外部干扰、系统不确定性,设计了自适应非奇异终端滑模控制器并给出了系统的稳定性证明。3.针对相对翻滚目标的安全逼近问题,分别提出了椭圆蔓叶曲面势函数和球面势函数制导方法。(1)提出了基于椭圆蔓叶曲面势函数的安全逼近与避障制导方法。将翻滚目标逼近的安全与躲避障碍物问题转化为动态环境的路径规划问题。根据状态误差设计了吸引势函数。在逼近的最终逼近段设计了椭圆蔓叶线的安全走廊。将障碍物假想为具有一定半径的球体,基于高斯函数法设计了障碍物势函数。(2)提出了基于球面势函数的安全逼近与避障制导方法。由椭圆蔓叶曲面势函数构建的安全域属于半安全域。在半安全域分析的基础上,根据全安全域的任务要求设计球面全安全区和锥面安全走廊。4.设计了航天器相对翻滚目标近距离运动控制的地面悬吊实验方法。(1)搭建了基于悬吊式重力补偿系统的地面实验平台。其工作原理是借助随动平台吊索的恒拉力,用于抵消实验航天器所受的重力,模拟航天器的太空失重环境。(2)设计了地面动力学实验控制方案。首先,根据相似性理论推导了悬吊缩比实验的比例因子。其次,设计了地面相对位置和相对姿态控制策略。最后,进行了追踪模拟器相对翻滚目标模拟器的近距离运动控制实验。
其他文献
随着机器人技术的飞速发展,管道机器人作为特种机器人的一种取得很大进步。水平井牵引机器人属于管道机器人的范畴,在石油开发领域的应用越来越多。由于水平井井身结构的复杂以及井深长度的增加,具备大牵引力潜力的液压驱动牵引机器人越来越受到人们的重视。然而,目前应用的水平井液压驱动牵引机器人大多存在牵引力不足、适应性不强、可靠性不高以及运行效率低等问题,严重制约其工作范围以及发展进程。针对牵引机器人存在的以上
载人探月序列任务的设计与仿真,可以解耦多个飞行任务,有效减小任务规模,提高任务成功率,对我国载人登月任务实施具有重要的意义。本文主要针对基于环月空间站的载人月球探测序列任务展开研究,研究成果如下:提出了伪春分点有限傅里叶级数轨迹成型法。利用逆动力学解析法,建立了改进春分点摄动方程的逆动力模型,由此提出伪春分点有限傅里叶级数设计方法,研究了面内多圈大偏心率转移以及深空转移的小推力轨道设计。针对三体条
水面航行器、水下滑翔机、海洋机器人、导航浮标等海洋工程装备是海洋资源探测和海洋权益维护的关键技术装备,缺乏高效可靠供电方式是制约上述装备走向实用化的技术瓶颈之一。结合当前海洋工程装备高效供电方式缺乏的现实需求和现有大型波浪能转换装置难以直接用作小型海洋工程装备供电模块的技术障碍,本文提出并研制了一种全新的基于自适应对转式运行机理的小型波浪能转换装置,转换装置的核心换能部件即为波浪能吸收器。新型波浪
当前,空间碎片环境日益恶劣,对于空间环境的治理任务迫在眉睫,亟需发展一种具有低成本、高效率及强通用性特点的主动式空间碎片清除系统。空间柔性网抓捕技术以其成本低、容错率高等应用优势,特别适合于对空间碎片这类非合作目标的捕获,已成为当前空间碎片主动清除技术领域的研究热点。本文以低轨空间碎片清除为应用背景,以空间柔性网抓捕技术为研究对象,基于仿生学理论与方法开展应用研究,提出了一种批量低轨空间碎片清除方
超燃冲压发动机中液态燃料的雾化及混合性能对发动机性能有决定性作用。液态燃料垂直喷入超声速气流中的变形、破碎及雾化特性的研究是建立燃料分布模型的基础。本文采用高速激光阴影、显微成像系统及相位多普勒分析仪(Phase Doppler Anemomitry,PDA)着重研究了液体射流近场的流场结构、射流轨迹、表面波特征及液滴空间分布,建立了射流轨迹模型,揭示了表面波产生及发展机理。采用VOF(Volum
薄板构件广泛应用于飞机的关键部位,其质量可靠性自然受到人们更多的关注。对于宏观缺陷,目前存在的常规无损检测方法已发展的较为成熟。而对于引起这些宏观缺陷的主要原因,如疲劳、蠕变、腐蚀等,目前尚无较为理想的方法对其过程进行监测与评价。近些年的研究表明,超声非线性效应与材料损伤程度之间存在密切的联系,非线性超声参量可以随着材料损伤程度的变化而发生明显地改变。对于薄板构件的检测,超声Lamb波是较为合适的
风暴轴是中纬度海气相互作用过程中关键的组成部分,对全球热量及水汽的输送有着重要作用。随着高分辨率观测资料及数值模式的应用,研究中小尺度海洋涡旋对风暴轴的影响可以进一步理解风暴轴的发展和演变机制,有助于完善中纬度地区海气相互作用理论,对于预测区域及全球气候变化有着重要意义。本文首先利用ERA-Interim全球大气再分析资料,通过比较不同海温分辨率时期风暴轴的差异,阐明了海温分辨率的提高对风暴轴的影
台风双眼墙(CEs),又名同心眼墙,是强热带气旋(TC)发展演变过程中一种常见的结构特征,双眼墙的形成(SEF)以及内外眼墙的替换过程(ERC)会导致TC强度和结构发生突变,大大增加了 TC强度预报和风雨预报的困难。海气相互作用是影响TC发展的重要物理过程,TC经过后引起的冷尾流和强烈的海浪直接影响海气间的能量交换。为了研究海洋对CEs的影响,本文利用高分辨率的区域海-气-浪耦合模式,成功模拟出S
航天器在发射过程中会受到低至几赫兹高到几千赫兹的振动激励,剧烈的振动和冲击载荷使航天任务的安全性和可靠性受到了严重威胁。随着航天器对结构减振性能要求的不断提高,传统工程结构越来越难平衡承载能力和质量约束之间的矛盾。为了解决这个难题,受山羊在悬崖间奔跑和跳跃时其腿骨轻松自如对付落地冲击的启发,本文提出了基于山羊腿骨微观组织构造和结构的仿生减振结构设计思想,并围绕密质骨微观结构分析、仿生交错复合结构设
本文主要以直接数值模拟为研究手段,针对压力梯度作用下超声速湍流边界层的相干结构演化规律,三维流场组织结构以及湍流统计特性开展了深入而系统的研究。特别是采用“分而治之”的研究思路,将壁面曲率效应与压力梯度解耦开来,既分别研究了单纯平板超声速湍流边界层在逆压梯度(APG)和顺压梯度(FPG)作用下湍流结构及统计特性的响应规律,同时还将相同压力分布条件下曲率壁面耦合的压力梯度效应与单纯压力梯度效应进行了