论文部分内容阅读
高超声速飞行器具有广阔军事以及民事应用前景,而其所处的恶劣飞行环境使故障更易发生,对控制系统的稳定性、安全性以及可靠性提出了更高的要求,因此为故障系统设计自愈合控制方案具有现实意义。本文以高超声速飞行器为研究对象,考虑传感器/执行器故障以及外部扰动,研究故障诊断以及自愈合控制方案。论文主要研究内容如下:
针对带有多传感器故障的高超声速飞行器巡航系统,提出了一种基于自适应增广观测器的故障诊断和自愈合控制方案。为了便于多传感器故障建模,将非线性纵向动力学模型转化为T-S模糊模型。为了快速准确地检测、分离故障,引入Luenberger观测器生成输出残差,并考虑观测器收敛性以及外部扰动设计阈值。通过改进的增广观测器同时估计多个传感故障,利用带有比例微分环节的自适应律进行干扰估计,该方法不受扰动幅值的限制。最后考虑故障和干扰,设计了一个自适应模糊反馈容错控制器,保证系统输出稳定跟踪控制指令。
针对带有升降舵故障的高超声速飞行器巡航系统,提出了一种基于自适应状态观测器的故障诊断和自愈合控制方案。为了简化观测器和控制器设计,通过反馈线性化技术将飞行器复杂非线性模型转化为仿射非线性模型,并建立升降舵偏置故障模型。为了建立故障检测机制并提高检测的准确性,分别为高度以及速度子系统设计状态观测器,综合考虑观测器输出以及外部扰动,确定合理的检测阈值。通过引入干扰抑制水平参数并设计自适应状态观测器进行故障估计,使算法对干扰鲁棒;在此基础上,设计非线性干扰观测器进行干扰估计。最后设计了一个自适应非线性反馈容错控制器,保证飞行高度与速度稳定跟踪控制指令。
针对带有舵面故障的高超声速飞行器姿态系统,提出了一种基于自适应反步法的故障估计和自愈合控制方案。基于高超声速飞行器姿态系统的仿射非线性模型,建立舵面偏置故障模型。为了获得检测机制所需的输出残差,设计非线性故障检测观测器估计姿态角,由此确定故障发生时间。为了准确估计故障并降低外部扰动的影响,基于增广系统设计了一个自适应鲁棒观测器,使得估计误差能满足L2-增益干扰抑制。最后设计了一个自适应反步容错控制器,保证系统输出姿态角稳定跟踪控制指令。
基于 MATLAB 平台对上述故障诊断和自愈合控制方案进行对比仿真验证,仿真结果表明本文设计的方案能够快速准确地估计故障并能对故障进行有效补偿,从而保证系统的闭环稳定和准确跟踪。
针对带有多传感器故障的高超声速飞行器巡航系统,提出了一种基于自适应增广观测器的故障诊断和自愈合控制方案。为了便于多传感器故障建模,将非线性纵向动力学模型转化为T-S模糊模型。为了快速准确地检测、分离故障,引入Luenberger观测器生成输出残差,并考虑观测器收敛性以及外部扰动设计阈值。通过改进的增广观测器同时估计多个传感故障,利用带有比例微分环节的自适应律进行干扰估计,该方法不受扰动幅值的限制。最后考虑故障和干扰,设计了一个自适应模糊反馈容错控制器,保证系统输出稳定跟踪控制指令。
针对带有升降舵故障的高超声速飞行器巡航系统,提出了一种基于自适应状态观测器的故障诊断和自愈合控制方案。为了简化观测器和控制器设计,通过反馈线性化技术将飞行器复杂非线性模型转化为仿射非线性模型,并建立升降舵偏置故障模型。为了建立故障检测机制并提高检测的准确性,分别为高度以及速度子系统设计状态观测器,综合考虑观测器输出以及外部扰动,确定合理的检测阈值。通过引入干扰抑制水平参数并设计自适应状态观测器进行故障估计,使算法对干扰鲁棒;在此基础上,设计非线性干扰观测器进行干扰估计。最后设计了一个自适应非线性反馈容错控制器,保证飞行高度与速度稳定跟踪控制指令。
针对带有舵面故障的高超声速飞行器姿态系统,提出了一种基于自适应反步法的故障估计和自愈合控制方案。基于高超声速飞行器姿态系统的仿射非线性模型,建立舵面偏置故障模型。为了获得检测机制所需的输出残差,设计非线性故障检测观测器估计姿态角,由此确定故障发生时间。为了准确估计故障并降低外部扰动的影响,基于增广系统设计了一个自适应鲁棒观测器,使得估计误差能满足L2-增益干扰抑制。最后设计了一个自适应反步容错控制器,保证系统输出姿态角稳定跟踪控制指令。
基于 MATLAB 平台对上述故障诊断和自愈合控制方案进行对比仿真验证,仿真结果表明本文设计的方案能够快速准确地估计故障并能对故障进行有效补偿,从而保证系统的闭环稳定和准确跟踪。