【摘 要】
:
相关滤波器在普通视频目标跟踪以及无人机跟踪方面都表现出了良好的性能,许多基于判别相关滤波器(Discriminative Correlation Filter,DCF)的方法在视频目标跟踪方面成功地利用构建模型缓解了边界效应和时间滤波退化问题。这些方法主要依赖于各种显式的先验正则化项,用一个结构框架来控制目标函数更新损失的退化,但往往忽略了数据保真项的损失,并且这些方法往往也会受到边界效应以及背景
论文部分内容阅读
相关滤波器在普通视频目标跟踪以及无人机跟踪方面都表现出了良好的性能,许多基于判别相关滤波器(Discriminative Correlation Filter,DCF)的方法在视频目标跟踪方面成功地利用构建模型缓解了边界效应和时间滤波退化问题。这些方法主要依赖于各种显式的先验正则化项,用一个结构框架来控制目标函数更新损失的退化,但往往忽略了数据保真项的损失,并且这些方法往往也会受到边界效应以及背景噪声引起的畸变问题的限制,这种限制在无人机跟踪方面更为明显。针对以上问题,我们提出了一个结合时空正则化相关滤波器的双边加权回归排序模型。这里,我们采用两种方法来解决上述问题。首先,在数据保真项中引入了双边约束,以控制滤波器数据保真项的行和列损失。加权矩阵可以在学习过程中对数据丢失进行自适应惩罚,以避免跟踪偏移问题和模型退化问题。其次,在每次迭代中,更新后的加权矩阵通过排序和数值变换得到一个新的加权矩阵来更新滤波器。在无人机跟踪方面,我们通过引入Kullback-Leibler散度,提出了畸变Kullback-Leibler散度相关滤波器模型,改善了原模型里的欧几里得距离,减少了滤波器中噪声造成的失真导致的跟踪偏移。同时引入Jensen-Shannon散度代替Kullback-Leibler散度,从而研究测量方法对跟踪效果和模型性能的影响。此外,结合双边约束的方法,我们提出了双域Jensen-Shannon散度相关滤波器模型。迭代求解时,将以上模型近似为线性等式约束问题,并用乘子交替方向法(Alternating Directions Method of Multipliers,ADMM)迭代求解。通过在一些应用较为广泛的视频目标跟踪数据集上的大量实验进行定性和定量评价,证明了我们提出的方法的有效性和优越性。
其他文献
基于TCP/IP的网络由于设计之初对支持移动性考虑不足,难以适应车载高速移动环境,这成为制约车联网和车内娱乐发展的瓶颈。针对现有车载娱乐系统时延高且不稳定的问题,研究了NDN基本原理、NDN车联网应用场景、聚类划分算法、视频传输相关技术等。主要研究内容和创新点如下:(1)在深入研究NDN基本原理和车联网特性的基础上,提出了将NDN运用于车联网的构想,以替代传统基于TCP/IP体系结构的车联网。ND
随着人工智能的兴起,图像数据呈爆炸式的增长,文档文本检测已不再满足人们的日常需要,更多的将是对场景文本的进一步研究。而场景文本检测又由于其特殊性,受到诸如光照、背景复杂度、文本多样性等多种因素影响,已成为近几年研究的热点之一。目前主流检测算法主要基于深度学习的方式,针对多方向文本边框的线性特征设计且均具有较好的检测结果,但由于曲线文本自身的特殊性即对应表征方式未能实现边缘轮廓的精准定位,造成精度下
伴随着人机交互的普及,以及深度学习技术在计算机视觉领域的不断成功,基于深度神经网络的面部表情识别已经成为情感计算中的热门研究方向。在面部表情识别研究中,通常会面临三个方面的突出问题,第一方面,实际应用中图像采集设备捕捉到的人脸往往难以保证都是正脸,不可避免的会出现大量各种姿态的面部图像。然而,当前大部分的面部表情识别研究通常只针对正脸图像,当人脸姿态存在较大角度的旋转时,识别精度大幅下降。稳定可靠
“歌唱性”是音乐表演艺术必需具备的一种演奏状态,其描述的不是单纯音与音之间的连贯问题,也不是持续音之间相互连接的问题,而是情感状态的连接问题。钢琴独奏曲《松花江上》是崔世光依据原同名声乐独唱曲改编而成,作品充分利用了钢琴的优势,在保留原旋律的基础上将织体、音区、力度、和声等方面极大地扩展,强化了音乐的张力,使作品中的情感表达内涵得到丰富,“歌唱性”的表现视角得到扩充,增加了无限的艺术魅力。在长期的
机电一体化技术是一项综合性技术,涉及范围广,囊括了机械技术、计算机技术、电子技术等。在信息化技术持续发展中,人们对机电一体化技术的重视程度逐渐加深,其逐渐运用到各个领域中,为推动我国现代化建设作出了巨大贡献。本文首先对机电一体化技术及人工智能技术进行简单概述,然后探讨人工智能在机电一体化中的应用,最后展望人工智能环境下机电一体化技术的发展趋势。
近年来,随着社会技术的突飞猛进,尤其是人工智能技术的飞速发展,便捷的语音人机交互技术在文体领域的各类应用场景快速呈现。文体类应用场景中大多存在环境噪声过大的问题,严重影响实际人机语音交互的可靠性问题,该类问题统称为“鸡尾酒会问题”(Cocktail Party Problem,CPP),它一直是语音识别领域的热点研究问题之一。本文依托智能乒乓球训练项目,设计了一套智能乒乓球训练系统中的语音问答子系
信息科技进步催生了数据挖掘技术,聚类分析是数据挖掘中一项关键技术。聚类分析是一种无监督学习的技术,旨在不利用外部先验信息实现对未标记数据集的分类。聚类算法是聚类分析实现的主体,K-Means算法以其实现原理简单、时间复杂度低等优点广泛应用于聚类分析领域,但其存在K值需要预先设定、初始聚类中心随机选择易陷入局部最优解等不足。密度峰值聚类算法是一种新型的聚类算法,该算法具有原理简单、实现高效等特点,引
人脸表情识别技术作为情感计算领域中的一条重要分支,在安全驾驶、人机交互等方面有着较好的应用前景,研究人脸表情识别技术对推动人工智能的进一步发展具有重大的意义。现有的人脸表情识别技术主要适用于实验室条件下采集的人脸表情图像,但是在现实生活中采集的人脸表情图像大多会受到人体姿态、光照变化和遮挡等一些因素的干扰,增加了人脸表情识别的难度。本文研究基于注意力机制的人脸表情识别,主要工作内容如下:(1)在人
随着大数据和物联网等技术的发展,数据流已经成为一种新的数据形式,如何挖掘数据流中蕴含的信息逐渐成为研究热点。在有限的内存中快速处理数据流,以获取高质量的类簇划分的数据流聚类技术是数据流挖掘的一个重要方向。然而数据流聚类面临诸多挑战,基于密度的数据流聚类方法能够发现任意形状的类簇,但在概念漂移环境下存在参数难以设定、聚类精度低的不足;现有的数据流聚类方法不能很好地应对海量的多样化数据以及实现多源异构
高维数据由于自身直接处理的高复杂度和其本质特征的低维特性,结合日益增多的数据量和增大的数据样本维度,字典学习成为近些年来机器学习和计算机视觉研究领域的热点之一。字典学习算法应用于图像信号处理的基本假设是:自然图像本身具有稀疏特性,用一组过完备基(字典)将该图像信号线性表示出来,对应的表示在满足一定的稀疏度条件下,可以获取对原始信号的良好近似。从某种意义上来说,通用字典学习的优化模型是从信号恢复/重