碳纤维布加固混凝土梁柱承载力研究

来源 :武汉大学 | 被引量 : 0次 | 上传用户:wynfloodforce
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
用碳纤维布和粘钢加固混凝土结构是当前建筑工程领域中最常用和最流行的两种混凝土结构加固技术,但采用以上两种材料复合加固混凝上受压构件,国内外尚未见到有关文献报道.该文通过22根加固钢筋混凝上方柱的轴心受压试验,研究了碳纤维布和角钢以及两者复合加固后混凝上柱破坏特征、受力性能和破坏机理.对不同方法加固的钢筋混凝上柱的极限承载力、应力- 应变关系以及刚度和延性等方面进行了研究与分析.同时,指出该文首次提出的复合加固法是一种性能优良的加固法,可为工程应用提供参考.
其他文献
结构抗震混合试验方法将数值模拟与真实试验相结合,将结构中强非线性的构件进行真实试验,其余部分利用计算机进行数值仿真,能够准确获得结构的地震反应。然而,随着结构的复杂化程度加大,数值子结构中强非线性的构件数量增多,只取其中一个构件进行试验实测的混合试验效率会逐步下降。为提高混合试验方法的精度和效率,本文基于离线模型参数修正提出一种新的结构混合试验方法。从获取结构系统层次地震响应的目标出发,该方法先从
学位
地震是现阶段人类面临的最大自然灾害之一,大震对框架结构的损害十分严重。以往关于地震作用下框架结构的研究主要集中在水平地震作用时,而某些实际震损分析表明竖向地震产生的轴力变化给框架结构构件性能可能带来较大的影响。本文开展对轴力变化时特别是竖向地震作用引起轴力变化时钢筋混凝土柱抗震性能的研究,主要完成了下列工作:  首先,根据现行规范设计了一7层3跨平面RC框架作为原型,取其在双向地震作用时轴力变化幅
目前,胶合木/竹-混凝土组合梁(Timber/Bamboo-concretecompositebeams,简称TCC/BCC梁)的研究与应用主要集中在混凝土板的“湿”连接方面,即上部混凝土板通过现浇方式与木/竹梁结合在一起,其在施工效率、力学性能及长期变形等方面存在明显缺陷,而基于“干”连接的装配式组合梁可以有效克服上述问题,是TCC/BCC研究的新方向。设计出同时具备高刚度、高承载力、高延性,且
学位
随着我国科技的发展,桥梁建设水平的不断提高,为了加快城际之间的交流与发展,桥梁正在扮演着重要的角色。尤其是大跨度桥梁,具有较强的跨越能力,是跨越山谷、江海的首选桥型。但在强地震作用下,其一旦受到破坏,将给人们带来不可估量的生命财产损失。鉴于此,需要重视大跨度桥梁的抗震性能,同时对其减震措施的研究也显得非常重要。本文提出了一种新型非线性限位器减震措施,并对其进行了数值分析以及结合一座双塔不对称混合梁
随着我国城镇化建设和旅游景区开发的推进,以玻璃桥面为代表的人行桥建设方兴未艾,且呈现出“刚度小、质量轻、阻尼低”的特点,结构外形也更加奇特。本文以两座典型的索支撑人行桥结构为对象,通过风洞试验和有限元分析研究了二者的风致与人致振动响应,并研究了常用的调谐质量减振器(TMD)的参数设计与优化方案。完成的主要工作和成果如下:(1)通过气弹模型或节段模型风洞试验发现开槽变截面主梁单悬臂斜拉人行桥的颤振稳
胶合竹梁是现代竹结构的基本受力构件,对建筑结构跨度和室内净空高度有重要影响,而胶合竹梁抗弯刚度低、变形大,极大地限制了竹结构的跨度与应用范围,已成为制约现代竹结构发展的瓶颈性问题。借鉴胶合木-混凝土组合梁(TCC)的研究成果,研发胶合竹-混凝土组合梁(BCC),是解决这一问题的重要方向。在长期荷载作用下,竹/木材料具有显著的蠕变,混凝土板及连接件本身也存在徐变,这些因素都使得组合梁在工作过程中的挠
学位
无粘结预应力加筋土挡墙技术采用预应力筋实现了墙面板和侧压板对填料施加主动约束。预应力筋连接了墙面板与侧压板,张拉预应力筋带动两板对填料施加侧向压力,使得填料、墙面板、侧压板、预应力筋形成加筋体。无粘结预应力加筋土挡墙依然是一种柔性支挡结构。本文基于增大填料密度法完成了该类挡墙的室内缩尺模型试验,分析了在施工和加载阶段墙面板的水平位移、墙顶竖向位移、预拉力损失、水平土压力、基底土压力的分布和发展规律
活性粉末混凝土(Reactive Powder Concrete,RPC)是一种具有超高的抗压强度、较高的抗拉强度以及良好的耐久性等优点的新型水泥基复合材料。将性能优异的RPC结合型钢组成型钢活性粉末混凝土(Steel Reinforced Reactive Powder Concrete,SRRPC)组合结构,不仅能显著提高构件的承载力及抗震性能,还能凭借RPC良好的耐久性提高构件的使用寿命,并
纤维增强复合材料(FiberReinforcedPlastic/Polymer,简称FRP)因其优异的力学性能和耐腐蚀性能,在土木工程等领域得到了广泛的应用。现今,随着人们对美好生活需要的日益增长,使用FRP替代传统钢材,是实现建筑、桥梁等结构轻量化、大跨度和长寿命发展的重要举措之一。而玄武岩纤维增强复合材料(BasaltFiberReinforcedPlastic/Polymer,简称BFRP)
学位
近年来,同一地区短时间内遭受多次地震作用的情况频频发生,建筑结构在多次地震作用下的抗倒塌问题逐渐引起国内外学者的关注。大量地震资料表明,每次大地震的发生一般都伴有余震甚至强余震,结构在主震作用下构件产生了一定的损伤,而余震与主震时间间隔较短,主震形成的损伤无法得到及时修复,后续的(强)余震会导致结构中已有损伤的构件破坏加剧,甚至倒塌。目前大多数地震作用下结构的抗倒塌研究基本上仅考虑单一地震作用且以
学位