钛钢爆炸焊接复合板界面不均匀性及其关键特征的超声波检测

来源 :沈阳理工大学 | 被引量 : 0次 | 上传用户:abubob
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
钛钢爆炸焊接复合板具有覆板的耐腐蚀性和基板的高强度高塑性等性能,以其兼有性能和经济成本上双方面的优势广泛应用于多种工业领域;爆炸焊接复合板的结合界面不均匀性使复合板服役受到不同程度的制约。本文针对钛钢爆炸焊接复合板,采用金相显微镜、扫描电镜、纳米压痕仪、超微载荷硬度仪、电子万能实验机、分离式霍普金森压杆和超声C扫描系统等分析测试设备,研究了复合板结合界面内由覆板到基板过渡区域的组织结构、硬度和模量、元素分布、缺陷构成以及复合板力学性能和结合界面的C扫波形成像等特征和规律。钛钢爆炸焊接复合板结合界面呈周期性波浪状结合,本论文研究的板材波状结合界面的周期波长和波高分别为1723μm和300μm,具有明显的层次划分,各层次组织结构变形程度不同,形成不均匀的界面结合区。结合界面从覆板侧到基板侧的形变区域依次为:覆材侧不明显变形区、基材侧等轴细晶区(约21μm)、基材侧纤维区(约200μm)和基材侧扭转区(约108μm)。在爆炸焊接结合界面处存在漩涡组织,由基板和覆板成分混合构成,内部含有局部熔化区、裂纹、气孔等物质存在;局部熔化区的元素扩散形成Fe Ti、Fe2Ti、Ti C等金属间化合物,其纳米硬度能够达到11.73GPa,相比于原始基板(铁素体2.06GPa,珠光体3.02GPa)、覆板(2.78GPa)和过渡区域各层次组织的纳米硬度有显著提高。力学性能测试结果表明:分层拉伸试验中,钛钢复合板沿爆炸方向结合层的抗拉强度为578MPa;复合板沿垂直于爆炸方向的结合层抗拉强度为472MPa,说明复合板横向的拉伸性能优于纵向的拉伸性能,钛钢复合板的拉伸性能具有各向异性。复合板剪切强度良好,断裂位置在波状界面上为韧性断裂。霍普金森压杆实验表明,相较于基板层和覆板层,结合层具有更高的绝热剪切敏感性。通过对钛钢复合板的超声水浸C扫描成像,直观、清晰地判断界面波纹的连续区域和断续区域,通过波态能够反映出界面的不均匀性,将无损检测参量与复合板的微观组织和力学性能等有损检测手段联系,对爆炸复合板进行评价。
其他文献
作为重要战略资源的稀土元素由于其具有4f电子壳层的独特结构,所以在自然界中的稀土元素主要以不溶性固体稀土氧化物和离子型稀土化合物的形式存在,各种不同的稀土元素往往很难用工艺方法进行单一稀土元素的分离与纯化,为了促进稀土绿色分离纯化,研制出新型绿色环保的稀土固相萃取剂是十分具有意义的。以下内容为本文的主要实验内容以及研究结果:(1)成功合成了十种离子液体聚合物:无磁性1-乙烯基-3-烷基咪唑聚合物(
学位
本论文采用超声振动激光熔覆技术在W18Cr4V高速钢基体表面上制备WC/CoCrFeNiMn涂层。熔覆层粉末选择CoCrFeNiMn高熵合金粉末作为粘结相,碳化钨粉末作为硬质相。研究了同一工艺参数下对不同含量碳化钨的熔覆涂层的成型规律。采用光学显微镜、扫描电子显微镜、显微硬度计、X射线衍射仪和往复式摩擦磨损试验机等分析测试方法对有无超声振动辅助激光熔覆WC(CoCrFeNiMn)x(x为质量百分比
学位
本文制备了Ti40.9Zr30.4Nb4.2Cu7Ni1.7Be15.8内生非晶复合材料(Bulk matallic glass composites,BMGCs)、钨颗粒/非晶复合材料(Wp/Ti40.9Zr30.4Nb4.2Cu7Ni1.7Be15.8BMGCs)和钨骨架/非晶非晶复合材料(Ws/Ti40.9Zr30.4Nb4.2Cu7Ni1.7Be15.8BMGCs)。对其制备方法及力学性能
学位
跨学科主题学习是新课标所强调的素养导向、综合性、实践性等理念的具体落实,是硬性规定,有明确的课时要求。跨学科主题学习需要围绕“跨学科”“主题”“学习”三个关键词设计具体路径,以跨学科概念、社会热点问题、共通性素养为三向关联,实施初中物理跨学科主题学习。
期刊
Ti3SiC2陶瓷不仅抗热震性、热稳定性和抗氧化性良好,而且具有金属的优良性能,在常温下拥有高导热与高导电的性能,拥有较低的维氏硬度和较高的弹性模量,且有一定的延展性使其可以像金属材料那样进行拉伸与加工,是一种潜在的受电弓滑板材料。石墨烯是自然界已知的最轻、最薄、最强的材料,被评价为未来几十年和几百年有发展前景的科研材料,其强度、刚度、弹性、导热性和电子迁移率也很高。石墨烯在陶瓷基体内具有良好的分
学位
随着各式移动电子设备的迅速发展,我国已经成为了锂离子电池消费大国,锂离子电池累计已经超过了170亿个,其中绝大部分是以钴酸锂作为正极材料的锂离子电池。为进一步解决我国钴资源紧张问题,钴酸锂正极材料的回收利用成为当务之急。本文提出利用新型氯化胆碱基低共熔溶剂从废旧钴酸锂正极材料中回收钴,再以此为原料再生制备成为正极材料钴酸锂,主要研究内容如下:首先,研究了钴酸锂在氯化胆碱-丙三醇低共熔中的浸出过程。
学位
TiB2颗粒增强铝基复合材料具有力学性能高、加工性能好等诸多优点,已成为航空航天、国防军工、机械制造等众多领域的潜能材料。将该类复合材料制成丝材,探索合适的熔化方法实现增材制造,是进一步拓宽其应用领域,充分发挥性能优势的新的研究课题。本文研究工作以TiB2/6056铝基复合材料丝材为焊材,冷金属过渡(CMT)技术为加热方式,探索TiB2颗粒增强铝基复合材料丝材的电弧增材(WAAM)工艺,研究增材件
学位
氢能是一种在当今形式下非常有前景的清洁新能源,它是解决能源危机的重大突破口,也是能源可持续发展的重要研究方向。水电解制氢是一种获得高纯度氢能的有效方式。电解水制氢过程涉及阴极的氢气析出反应(HER)和阳极的氧气析出反应(OER)。目前具有高效催化活性的贵金属铂由于储量有限、价格昂贵等原因限制了其在工业上的大规模应用,所以开发低成本、高活性的非贵金属催化剂来提高制氢效率和降低成本,为氢能的开发和利用
学位
镁合金作为目前最为轻质的结构工程材料在航空航天及军工制造领域作为减重材料大面积应用,在很多实际应用场景,准静态下的镁合金力学性能已经无法满足零件的服役要求。因此研究镁合金材料在高应变率下动态冲击压缩载荷中的力学行为具有非常重要的实际意义。为揭示不同成分镁合金在高速冲击载荷作用下的动态力学性能、变形机制及失效行为,本文利用分离式霍普金森压杆装置对不同热处理制度下的AZ91、ZA73及Mg-9Gd-4
学位
随着航空及船舰工业的快速发展,其核心热端部件的连接修复技术成为了热点研究方向,并成为该领域持续发展的重要组成部分。由于热端部件复杂特殊的结构以及高昂的成本,亟需钎焊连接技术对该单晶高温合金的进行制造和修复。本文采用自主研发的B-Co38Cr钎料对第三代含Re镍基单晶高温合金进行钎焊连接,研究不同工艺对接头元素扩散行为、组织演化过程、及接头力学性能的影响,获得高性能接头实现该单晶高温合金高质量连接。
学位