新月十字架银纳米结构和圆盘波导耦合共振系统中的多重Fano共振

来源 :陕西师范大学 | 被引量 : 0次 | 上传用户:wencentss
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
表面等离激元因其具有丰富的光学特性而受到广大研究者的关注。表面等离激元可以分为两种类型:一种是受金属纳米结构的限制只能局限于金属纳米粒子的表面,称为局域表面等离激元(LSPs)。另一种是沿金属与介质界面传播的表面等离极化激元(SPPs)。局域表面等离激元是在三维条件下经外场激发,通过改变纳米结构的尺寸,形貌和光的偏振方向使得贵金属纳米粒子产生许多独特的光学特性,如等离激元波导、表面增强拉曼散射、电磁感应透明和Fano共振效应。表面等离极化激元是在二维区域进行研究。电磁波进入波导产生连续态和离散态,继而耦合形成Fano共振效应。Fano峰处电磁场被局限在腔内。这些光学特性被广泛应用在离子体滤波器,可调谐离子体分离器和传感器等方面。近年来,表面等离激元研究取得了很大的进展,但是在Fano共振效应和其它光学特性上的研究还有待完善。我们提出了基于局域表面等离激元的新月十字架银纳米结构和基于表面等离极化激元的圆盘波导耦合共振系统两种类型。通过模拟分析对这两类表面等离激元的光学特性进行研究。本文分为三个部分来探讨:第一部分介绍了表面等离激元的三种数值模拟方法,包括有限元法,时域有限差分法和离散偶极近似法。并对有限元法的基本原理和特点进行了重点阐述,对其他两种模拟方法进行了简单的叙述。本文主要采用基于有限元法COMSOL Multiphysics软件进行仿真模拟。第二部分研究了基于局域表面等离激元新月十字架形银纳米结构的光学特性。劈裂环在等离激元纳米结构中是比较常见的结构之一,理论上劈裂环(新月形)因其具有狭窄而尖锐的结构可以提高系统的FOM值。在劈裂环的基础上增加十字架,对十字架进行各种方式的旋转,可以对其不对称性进行多方位的调节。模拟分析,通过改变结构参数来打破结构对称性,可以产生新的等离激元磁模式和多重Fano共振,并可以对光谱进行有效的调控,更多的能量被局域在结构的凸凹处。同时,通过对称地改变两棒之间的夹角,FOM值可以实现较大的数值,在传感领域有重要的应用。第三部分研究了基于表面等离极化激元圆盘波导耦合共振系统的光学特性。圆盘腔内充满乙醇。采用二维有限元法计算了系统的透射率和磁场分布。波导产生的连续态和圆盘腔产生的离散态相互耦合形成双重Fano共振,通过调节圆盘腔的参数可以发现更多有趣的光学特性。在波导下方添加三角形腔,不对称圆盘腔,三角环腔和圆环腔可以实现对Fano共振不同程度的独立调控,并且通过改变乙醇的温度可以对系统的谱线进行调控。波导耦合共振系统的这些光学特性在光学开关,等离子体滤波器,可调谐离子体分离器和传感器等方面有广泛的应用前景。
其他文献
近年来,随着功率超声技术广泛进入大众视野,人们对超声加工以及超声处理越发关注。超声加工能够解决传统加工方法中遇到的部分工艺难题,从而提高被加工工件的质量,增强加工效率。超声处理也在超声乳化、超声分散以及超声污水处理等方面有了广泛应用。超声振动系统一般由超声换能器,变幅杆及加工工具头组成。超声振动系统工作过程中,首先由超声波发生器发出电信号,经超声换能器将其转化为机械波,再通过超声变幅杆放大振幅后传
当今社会,由于化石燃料的过度使用,造成了一系列环境污染、生态失衡、资源匮乏等严重的问题。开发清洁能源及能源转换装置成为了迫在眉睫的任务。燃料电池和金属-空气电池作为一种高效、环境友好的能源转换装置越来越受到人们的关注。但是其阴极氧还原反应的动力学过程缓慢,严重影响了燃料电池和金属-空气电池的效率。到目前为止,贵金属Pt及其合金作为氧还原反应最好的催化剂,存在价格昂贵、自然储量少、耐久性差、易腐蚀等
人类的神经系统在数毫秒内可以通过数千亿个神经元和数百万亿个突触连接,对外界信息进行编码、整合和传递,完成对外界刺激下的反映。如此神经信息过程是需要大量能量的。根据进化论的思想,生命进化过程是朝着处理更多信息,消耗更少能量的方向。因此能量消耗在神经元、神经回路乃至整个大脑的功能和进化中起到非常重要的作用。反过来,有限的能量消耗也可以作为外部约束因素,来优化神经网络的连接以及神经信号的生成和传递,最终
针对传统电网多数据源诊断方法中存在的吞吐量大、延迟处理时间长,导致电网多数据源诊断精准度低的问题,提出了基于大数据分析的电网多数据源实时在线诊断方法。分析电网多数据源特征,获取电网处于不确定程度故障状态下的信息量,避免产生过多数据。通过诊断方案的拓扑实现过程,构建电网多数据源多维诊断模型,由此触发多维大数据节点,确定不同节点间的关联性。标识唯一ID,设计数据处理流程,通过迭代处理更新聚类中心,依据
在新能源转换和制备器件中,电极催化反应决定着整个器件的工作效率,高效、多功能的电催化剂受到众多注目,于是越来越多研究者进行了廉价、高活性非贵金属电催化剂的研究。多孔聚合物特点是比表面积大、孔丰富以及骨架结构能够调节,有望作为电催化剂运用于新能源体系。在此我们分析了多孔聚合物和金属配位聚合物结构及电催化活性之间的构效关系,具体如下:(1)将1,2,4,5-苯四胺四盐酸盐与六环己酮水合物溶解于1-甲基
目前,对于高能重离子碰撞的研究是粒子物理学中重要的研究方向之一。描述粒子之间强相互作用的理论——量子色动力学被公认为是目前最基本的理论。它预言了在高温高能量密度下存在一种热密强相互作用的物质。这种物质被定义为夸克胶子等离子(Quark-Gloun Plasma,QGP),部分子(夸克和胶子)是其主要的自由度。QGP有望在实验室条件下的极端相对论重离子碰撞中产生。当部分子穿过QGP时,可能由于胶子辐
近年来,受高密度磁存储和高速信息处理需求的驱动,亚皮秒范围内纳米尺度器件的光驱动自旋动力学已经成为当下比较热门的课题之一。由于过渡金属氧化物团簇在催化、电子、磁性材料等领域具有巨大的应用潜力,在近几十年的实验和理论研究中受到了广泛的关注。因此本文选择三磁中心氧化物团簇,采用第一性原理方法对其几何构型、红外光谱和多体电子结构性质进行研究,并探索了这些团簇的磁各项异性以及可能实现的激光诱导的超快自旋动
高血压近年来对人体健康威胁性极大,高血压的致残性和死亡率主要是由其并发症引起的,其中一大类就是心血管疾病。高血压患者按照发生心血管事件的可能性又大致分为高危受试者和低危受试者。近年来,国内外学者对高血压大量临床案例进行总结,逐渐认为对高血压心血管事件进行风险分层是非常重要的。心血管系统呈现出复杂的变异性,即心率变异性(heart rate variability,HRV)。研究心率变异性信号可以有
随着光学及光学镀膜技术的发展,光学薄膜广泛应用于国防、通信、激光、能源、医疗等各领域。半导体可饱和吸收镜(SESAM)、石墨烯、碳纳米管、黑磷、拓扑绝缘体、过渡金属硫化物等作为主要的被动锁模器件被广泛应用于脉冲激光器中,但是这些吸收体存在损伤阈值低,透光率低等一些问题还未被解决。基于此,本文在SESAM上分别镀制高反膜和减反膜,以获取不同性能的SESAM器件并在石墨烯可饱和吸收体上镀减反膜。具体内
随着时代的发展,概率与统计知识越来越重要,概率与统计在《普通高中数学课程标准(2017年版)》中成为与函数,几何与代数、数学建模活动与探究活动并列的四大主线之一。在2018年8月教育部发布的《教育部关于做好普通高中新课程新教材实施工作的指导意见》中要求到2022年秋季,全国各省市均已使用新教材。目前,新课程理念指导下的高中数学人教A版新教材已出版。在新教材中,概率与统计发生了较大的变化,比如课程理