高强度高刚度镁基层合板的制备及组织性能研究

来源 :太原理工大学 | 被引量 : 0次 | 上传用户:yanhuo68
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
镁合金因其轻质、减震性好等优点,广泛应用于航空航天、交通运输以及电子通讯等领域。然而,许多构件,如飞机蒙皮、汽车覆盖件等,在要求材料轻质的同时,也要求其具有足够的强度和刚度。单一镁合金板难以满足高强度和高刚度的要求,严重限制了其进一步的应用。本文分别选用不锈钢和碳纤维作为复合增强体,制备两类高强度高刚度镁基层合板:首先选取强度刚度较高的304奥氏体不锈钢(ASS)为外层覆板,选取1060铝合金为过渡层板,通过热轧制备了兼具轻质和高强度高刚度优点的层合板;其次选取碳纤维作为增强相,通过热压制备了冶金结合的碳纤维增强镁基层合板。在此基础上,对所制备层合板的组织结构、力学性能以及变形和断裂机制进行了研究。本文通过采用光学显微镜(OM)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)观察分析层合板的层界面和各组元板的微观组织结构,采用X射线衍射仪(XRD)分析层合板的物相组成,采用电子背散射衍射(EBSD)分析层合板的织构,采用电子万能拉伸试验机测定层合板的力学性能,通过扫描电镜下的原位拉伸和原位弯曲试验观察层合板的变形和断裂过程,研究了层合板在退火过程中基板、外层覆板、过渡层板及界面的组织演变规律,分析了层合板在静态载荷下的断裂机制,建立了退火过程中反应扩散层生长的理论模型,阐明了层合板力学性能与微观组织之间的关系。利用热轧法制备了单道次下压量为27%、39%以及四道次总下压量为64%的ASS/Al/Mg/Al/ASS层合板,并对下压量为39%的层合板在200℃、300℃和400℃下进行1 h的退火处理。结果表明,200℃退火1 h后能够有效消除层合板的加工硬化。退火后层合板界面结合良好,未出现反应扩散层,表现出最好的综合力学性能:抗拉强度和抗拉刚度分别达到355 MPa和67 GPa。与原始镁板相比,分别提升了45%和46%;弯曲强度和弯曲刚度分别达到766.4 MPa和21.9GPa。与原始镁板相比,分别提升了96%和78%。表面覆盖不锈钢板的镁基层合板,其弯曲强度和刚度的提高比单向拉伸强度和刚度的提高更明显,更适用于对弯曲强度和刚度有较高要求的覆盖件、壳体件的制造。300℃退火1 h后层合板Mg/Al层界面处生成连续分布的Mg17Al12和Al3Mg2反应扩散层。退火态层合板中AZ31组元板均显示(0001)基面织构。随着退火温度的升高,AZ31组元板中变形织构组分减少,再结晶织构组分增多,基面织构强度降低。1060组元板主要以变形织构为主。200℃和300℃退火1 h后的1060组元板织构组分相同,主要由<111>纤维织构、铜型织构和s织构组成。当退火温度达到400℃时,1060组元板织构类型发生变化,铜型织构和s织构转向<100>纤维织构。ASS组元板在轧制过程中变形程度较低,呈现出较弱的轧制织构。退火后的织构组分主要有γ-fiber织构、<110>纤维织构和Brass织构等。200℃退火后出现了少量的Cube织构,300℃退火后出现了少量的Goss织构,最终在400℃退火后转变为Brass织构。400℃退火后,Mg/Al层界面处反应扩散层中的Al3Mg2层厚度为32.5μm,Mg17Al12层厚度为17μm。反应扩散层晶粒均为平行于横截面法线方向的柱状晶,且以大角度晶界为主,其中Al3Mg2层晶粒更加狭长。Al3Mg2层和Mg17Al12层织构散漫,强度较低。随着退火温度的升高,Mg/Al反应扩散层金属间化合物的生长符合抛物线规律,金属间化合物厚度呈指数函数增长。Al3Mg2层的扩散系数要大于Mg17Al12层的扩散系数,即Al在Mg中的扩散速率要快于Mg在Al中的扩散速率。而Al3Mg2的反应扩散层长大激活能低于Mg17Al12的反应扩散层长大激活能,表明退火过程中Al3Mg2层的生长速率高于Mg17Al12层。原位拉伸试验结果表明,没有金属间化合物层的层合板在裂纹萌生前出现明显的整体颈缩现象。对于有金属间化合物层的层合板,断裂最早发生在金属间化合物层,然后发生分层。当金属间化合物层厚度较小时(~9μm),初始裂纹平行于层界面;当金属间化合物层的厚度较大时(~45μm),初始裂纹垂直于层界面。原位弯曲试验结果表明,弯曲变形过程中,外层不锈钢覆板比中心镁合金基板承受更大的弯曲应力,能够较好的保护镁板。裂纹在镁合金层内部扩展较为缓慢的两个主要原因是:首先,裂纹最先在Mg/Al界面处产生,但强结合Mg/Al界面能促进载荷在层板间的有效传递。不锈钢层和镁合金层同时发生塑性变形,界面处的应力集中可以通过镁合金层和不锈钢层的协调变形而得到释放。因此裂纹钝化,在后续加载过程中停止扩展。其次,退火后镁合金层的塑性变形能力提高。镁合金层通过局部塑性流动,形成塑性区,消耗能量,提高了裂纹扩展所需的能量门槛,阻碍了裂纹的扩展。这些均有益于层合板强度的提高。此外,本文分别以AZ91粉末和锌铝合金作为中间熔合剂,热压制备了碳纤维增强镁合金层合板。结果表明,AZ91粉末在585℃下能够充分浸润碳纤维,但较高的成形温度导致碳纤维与基体中的铝元素发生了界面反应,不利于提高层合板整体力学性能。而锌铝合金可以在较低温度下充分浸润碳纤维,降低了高温下金属/碳纤维界面反应生成大量脆性碳化物的倾向。同时,锌铝合金能够与镁合金组元板实现良好的冶金结合。与原始镁板相比,层合板的抗拉强度和弹性模量分别提升了103%和41%。微观组织分析表明,Mg/Zn-Al层界面处存在厚度为6.8μm的连续分布的Mg Zn2析出相。Cf/Zn-Al界面处产生了一层厚度为62.95 nm的Al2O3反应层。该反应层阻止了热压过程中脆性碳化物的产生,起到了保护碳纤维的作用。碳纤维的断裂特征为纤维束的整体拉出,表明碳纤维与Zn-Al合金之间存在适度的界面结合。
其他文献
我国铁矿资源储量丰富,但矿物组成复杂且嵌布粒度细,磁选精矿往往需要利用反浮选进一步脱硅后,才能满足冶金的需要。目前利用反浮选工艺“提铁降硅”已成为选矿厂的必备环节,其技术关键主要是反浮选药剂的开发与应用。铁矿反浮选常采用的阳离子捕收剂十二胺,因其在水中的溶解性差、凝固点高,常将其配制成十二胺盐酸盐或十二胺醋酸盐使用,盐酸和醋酸存储困难、药剂配制过程不便、产生的泡沫发粘且长时间难以破裂,造成水和药剂
提到洞穴,对于拥有各种各样洞穴的中国来说,并不是特别稀奇,但是,有一种洞穴在我国却是极其罕见的,这种洞穴就是"海洋蓝洞"。海洋蓝洞如同深蓝色的眼睛一般镶嵌在广袤无垠的海面上。自古以来,人们就对海洋蓝洞展开了各种猜测,而这些猜测使海洋蓝洞变得更加神秘。那么,海洋蓝洞究竟是什么?海洋蓝洞里面有什么?海洋蓝洞危险吗?……现在就让我们一起揭开海洋蓝洞的神秘面纱吧!
期刊
不锈钢的使役性能和耐蚀性由所在环境腐蚀行为决定,其优异耐腐蚀性依赖于表面形成的仅有几纳米厚的钝化膜。钝化膜构成以Cr2O3为主,避免了环境介质对金属表面的侵蚀,因此研究钝化膜组成、结构及在腐蚀介质中的腐蚀机制至关重要。本文基于密度泛函理论,从原子层次构建了奥氏体不锈钢钝化膜Cr2O3表面结构模型,分析H2O、Cl介质吸附于钝化膜Cr2O3表面时,对Cr2O3表面稳定性的影响及腐蚀机制;基于高性能奥
在碳达峰、碳中和的大背景下,优化和调整能源结构、高效清洁利用煤炭资源势在必行。煤泥水作为煤炭工业的主要污染源之一,有效的煤泥水固液分离技术成为煤炭清洁利用的关键环节。本文首先研究了化学助滤剂及骨架构建体助滤剂对煤泥脱水效果的影响规律,在此基础上,设计了一种物理化学复合助滤剂以进一步改善煤泥脱水效果。其次,通过原子力显微镜、分子模拟、扩展的DLVO理论计算等手段揭示了助滤剂与煤泥颗粒间的相互作用机理
镁及镁合金具有独特的生物可降解性和生物相容性,接近人骨的弹性模量等优点,在生物医用领域中拥有广阔的应用前景。然而,镁合金在植入人体后,其过快的腐蚀速率往往会导致局部碱化发炎,破坏植入材料的机械完整性,不能确保其在服役期间正常使用,这极大程度地限制其在临床医学中的应用。目前,具有长周期结构(LPSO)的Mg-Zn-Y系合金由于其优异的力学性能和耐腐蚀性而引起人们的广泛关注。研究表明,微合金化是进一步
针对目前广泛应用的水力压裂在岩性与结构复杂、黏土类矿物含量高、塑性强的煤系复合储层中遇到层界面时,裂缝易出现钝化、“T”型或“工”字型扩展等难穿层问题,提出了采用具有压力峰值高、压力传递速度快的高能气体冲击压裂方法进行穿层压裂的研究思路。重点采用理论分析与数值模拟相结合的方法,系统研究了煤系复合储层的地质条件、高能气体冲击参量及其对冲击压裂缝穿层扩展的影响规律与机理。研究成果将为煤系复合储层穿层压
双相不锈钢兼有奥氏体不锈钢和铁素体不锈钢的特点,具有高强度、良好的耐蚀性以及优越的焊接性能,是一种重要的结构材料;与拥有相近性能的超级奥氏体不锈钢和镍基合金材料相比,由于在成分上以氮代镍,具有成本优势,是一种资源节约型不锈钢。同时,双相不锈钢的设计使用寿命长,服役周期成本低。该类合金已广泛应用于化学品船、油气田、烟气脱硫、海水淡化等工业领域中,市场潜力巨大。S32750属于第三代双相不锈钢,是超级
油页岩是一种潜在的能源,未来可作为石油和天然气的补充和替代能源。本文主要围绕原位注热开采油页岩过程中砂质泥岩盖层的稳定性展开研究,考虑砂质泥岩的物理力学性质具有显著各向异性,利用热膨胀仪、导热测定仪、低渗岩石渗透率测量装置、高温三轴岩石渗透率测量设备以及高温岩石压力机等设备,研究高温作用下各向异性砂质泥岩的热膨胀系数、导热系数、渗透率和力学参数(弹性模量E、抗压强度σp、抗拉强度σt、内聚力c和摩
煤层气作为一种非常规天然气资源,是改善我国一次能源消费结构的重要清洁能源。然而,由于煤层气储层渗透性较低,通常需采用压裂技术对储层进行增渗改造。目前,对煤层气的开采大多是照搬石油行业中的压裂工艺技术及参数,但与石油储层脆性特征相比,煤层气储层通常呈现“碎软”特性,其破坏形式表现为韧性破坏,即应力峰值后存在明显的应变软化区。已有压裂工艺,无论是垂直井,还是水平井,其在脆性度高的储层中压裂效果较好,但
近年来,机械响应荧光材料(MRL)在力传感、信息存储、显示等领域显示出巨大的应用潜力。其中,具有推-拉型结构的机械响应有机荧光小分子材料,可以通过选择不同种类的电子给体和电子受体来对分子结构进行灵活的调控,极大地提高了分子的多样性,从而受到研究人员的广泛关注。然而,如何提高MRL材料力响应信号的对比度,拓展它们在力检测和信息存储等方面的应用还需要进行深入的研究。为了提高MRL材料力响应信号的对比度