急性高山病和高原红细胞增多症的microRNA表达特征及其病理生理学意义研究

来源 :中国人民解放军陆军军医大学 | 被引量 : 0次 | 上传用户:chenlinwu
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
研究背景我国是世界上高原面积最大,常住人口最多的国家,有6000多万人居住在高原地区。随着高原地区社会经济和国防事业的日益发展,现在每年都有超过1000万人从平原进入高原从事旅游、商贸、建设和军事戍守。高原自然环境恶劣,低压低氧可导致急性高山病(又称急性高原反应)(acute mountain sickness,AMS)和高原红细胞增多症(high altitude polycythemia,HAPC)等疾病高发,严重损害身体健康。AMS是指从平原急进至高原(海拔高度2500 m以上)人群,出现由缺氧引起的以剧烈头痛、头晕、恶心等神经症状为典型表现的一种急性高原病。该病的发病率高,据国内外多项研究显示,AMS发病率高达30%-90%。同时,其危害性很大,轻者显著降低急进高原人的作业能力,影响日常工作,重者可以发展成为高致死率的高原脑水肿(high altitude cerebral edema,HACE),危及生命安全。因此,AMS已经成为威胁急进高原军民身体健康的主要疾病。HAPC是一种以红细胞过度增生为主要特征的常见慢性高原病,在久居3000-4500 m高原人群中,其发病率为1.21%-24.0%。HAPC对人体具有很大危害性,过度增生的红细胞会引起微循环障碍,造成各器官缺氧损伤;损伤严重者,甚至会发生各脏器血栓栓塞,导致猝死。因此,HAPC高发已经成为严重威胁久居高原军民的重大公共卫生问题。目前对于AMS与HAPC治疗,尚无特异性高、副作用低的治疗药物可用,因此疾病的早期预防具有重要意义。然而,目前对于AMS与HAPC发病风险预测也缺乏特异性强、灵敏性高的生物标志物。究其原因,以往对AMS与HAPC的研究主要集中于生理反应差异、生化代谢改变及病理形态异常等方面,而对其分子生物学机制缺乏系统性探究。因此,从新角度深入研究AMS与HAPC的发病相关分子生物学机制,寻找可能防治靶点及高效的预测标志物,对于维护我国高原军民健康、促进高原地区社会经济和国防事业的发展具有重大的现实意义。近年来,有关microRNA对基因表达调控及其在疾病发病机制中的作用受到广泛关注。microRNA是一类广泛存在于真核细胞中,长度为18-24个核苷酸的内源性小分子非编码RNA。该分子在基因表达调控网络中处于节点位置,通过转录或转录后抑制的方式,调控机体超过30%的编码蛋白质基因。低氧可以引起多种microRNA的表达变化,且许多microRNA参与了缺氧代偿性生理调节与缺氧病理生理学过程。现已发现,microRNA表达异常与冠心病、脑卒中、肝肾缺血损伤、急性呼窘迫症等多种缺氧相关疾病的发生密切相关。这些研究为阐明疾病发病机制和寻找有效的防治靶点提供了全新的思路。然而,microRNA在AMS发病机制中起到什么作用?其是否能作为预测AMS发病风险的高效生物标志物?目前尚缺乏研究。同时,microRNA还参与红系细胞的增殖、分化和成熟,并在真性红细胞增多症、继发性红细胞增多症及骨髓增殖性肿瘤等多种血液疾病的发病中起到重要的作用。然而,microRNA是否参与HAPC这种高原特殊环境中的血液系统疾病的发生发展?目前,也缺乏系统的研究。因此,本文围绕“microRNA在AMS和HAPC中的表达特征及其在疾病发病机制中的作用”这一主题,从下述五部分进行研究。第一部分,采用microRNA表达谱芯片对急性高原低氧暴露后AMS患者和不发病者的血浆标本进行检测,以揭示AMS患者的microRNA表达谱特征。并进一步对AMS发病相关microRNA的靶基因进行GO和KEGG富集分析,以探究这些microRNA所调控的分子生物学过程及信号通路,为AMS发病机制研究提供新的思路。第二部分,以AMS患者体内显著上调的miR-181b-5p为研究分子,分别在小鼠高原脑水肿(high altitude cerebral edema,HACE)模型上对miR-181b-5p的变化进行检测(注:HACE是重症AMS发展而来,目前研究认为二者主要在病情的严重程度不同,而发病机制基本相同,再者由于AMS动物疾病模型的缺乏,故本研究选用HACE模型进行研究);并进一步在细胞模型上对miR-181b-5p进行分子生物学实验,明确其在AMS炎症相关发病机制中所起的作用,为AMS治疗寻找新的靶点。第三部分,在AMS患者和不发病者平原时(急性低氧暴露前)血浆和唾液标本中进行 microRNA 实时定量聚合酶链式反应(real-time quantitative polymerase chain reaction,qRT-PCR)检测,为AMS发病风险预测寻找高效生物标志物。第四部分,对HAPC患者和同海拔健康对照的血浆标本进行外泌体RNA-seq检测,以揭示HAPC患者的血浆外泌体microRNA表达谱特征。并进一步对HAPC发病相关microRNA的靶基因进行GO和KEGG富集分析,以探究这些microRNA所调控的分子生物学过程及信号通路,为HAPC发病机制的研究提供新思路。第五部分,在HAPC患者及动物模型的红细胞内对miR-144-3p的变化进行检测;并进一步在红系细胞内针对miR-144-3p设计分子生物学实验,以明确miR-144-3p在HAPC红系细胞功能紊乱相关发病机制中的作用,为HAPC治疗寻找新的作用靶点。研究对象和实验方法一、AMS患者的microRNA表达谱检测(1)研究对象为急性暴露于高原环境中的AMS患者(AMS)和不发病者(Non-AMS)。AMS 诊断根据路易斯湖标准(Lake Louis score system,LLS)进行。(2)采集研究对象的人口学资料、生理学指标及血浆标本。(3)使用microRNA表达谱芯片对血浆标本进行检测,并对结果进行生物信息学分析。(4)运用qRT-PCR验证microRNA表达谱芯片筛选出的AMS发病相关microRNA。二、AMS发病相关分子miR-181b-5p的生物学功能研究(1)通过生物信息学分析,预测在AMS患者中上调的microRNA——miR-181b-5p的靶基因,了解其所涉及的信号通路。(2)选用8周龄的雄性C57BL/6小鼠,分成2组:(Ⅰ)正常对照组,在常氧环境中饲养24 h;(Ⅱ)高原脑水肿组,通过低压氧舱(模拟海拔:6000 m)暴露24 h复合尾静脉注射脂多糖(lipopolysaccharide,LPS)(剂量:0.5 mg/kg)复制疾病模型。(3)检测对照组和高原脑水肿组小鼠外周血白细胞中miR-181b-5p、IL-1β、IL-6以及TNF-α表达水平。(4)选用小鼠巨噬细胞系RAW264.7细胞作为细胞实验对象。将RAW264.7细胞分成2组:(Ⅰ)正常对照组,在21%O2条件下正常培养24 h;(Ⅱ)低氧和LPS复合刺激组,在1%O2和LPS(100 ng/mL)复合刺激条件下培养24小时,以构建细胞炎症模型。(5)使用 miR-181b-5p 模拟物(mimic)、抑制物(inhibitor)、阴性对照(negative control)转染RAW264.7细胞,检测细胞及上清中IL-1β、IL-6以及TNF-α的mRNA表达及蛋白含量变化。(6)采用双荧光素酶报告基因法鉴定“蛋白激酶C-δ(protein kinase C delta,PRKCD)”是否为miR-181b-5p的靶基因。三、平原血浆和唾液microRNA对AMS发病风险预测的研究(1)研究对象为AMS患者(AMS)和不发病者(Non-AMS)。AMS诊断根据LLS诊断标准进行。(2)采集研究对象的人口学资料、生理学指标。(3)采集AMS组和Non-AMS组的血浆及唾液标本。(4)使用qRT-PCR检测AMS组和Non-AMS组平原血浆和唾液中microRNA表达水平。(5)通过生物信息学分析microRNA生物学功能。(6)采用酶联免疫吸附试验(enzyme linked immunosorbent assay,ELISA)法检测AMS组和Non-AMS组急性高原暴露后血浆标本中IL-1β、IL-6以及TNF-α含量。四、HAPC患者microRNA表达谱检测(1)研究对象为HAPC患者和同海拔健康对照。HAPC诊断根据第六届国际高原医学和高原生理学学术会议推荐指南执行。(2)采集研究对象的人口学资料、生理学指标、血常规指标及血浆标本。(3)使用RNA-seq技术对血浆外泌体microRNA进行检测,并对结果进行生物信息学分析。(4)使用qRT-PCR验证筛选出的差异表达microRNA。五、HAPC发病相关分子miR-144-3p的生物学功能研究(1)通过生物信息学分析,预测HAPC患者中上调microRNA——miR-144-3p的靶基因,了解其所涉及的信号通路。(2)检测HAPC患者与健康对照红细胞中miR-144-3p表达水平及氧化物(ROS和MDA)和抗氧化物(SOD和GSH)含量。(3)动物实验研究:选6周龄的雄性SD大鼠,分成2组:(Ⅰ)对照组,在常氧条件下饲养28天;(Ⅱ)HAPC组,在低压氧舱(模拟海拔:5800 m)中持续暴露28天,复制HAPC大鼠模型。(4)检测对照组和HAPC组大鼠红细胞中miR-144-3p表达水平及ROS、MDA、SOD、GSH 含量。(5)选用人红系细胞系K562细胞为细胞实验对象。将K562细胞分成2组:(Ⅰ)正常对照组,在21%O2的培养箱中正常培养6h;(Ⅱ)氧化损伤组,使用含10 μM/mL过氧化氢的培养基,在21%O2的培养箱中培养6小时,构建细胞氧化损伤模型。(6)使用 miR-144-3p 模拟物(mimic)、抑制物(inhibitor)、阴性对照(negative control)转染K562细胞,检测细胞中ROS水平、MDA含量,及抗氧化物SOD1、GCLC、GCLM、CAT、GPX1 及 NQO1 mRNA 表达水平。(7)采用双荧光素酶报告基因法鉴定“核因子E2相关因子2(nuclear factor E2-related factor 2,NRF2)”是否为 miR-144-3p 的靶基因。主要结果一、AMS患者的microRNA表达谱特征(1)AMS患者和不发病者的microRNA表达谱存在显著差异microRNA芯片检测,共筛选到93个microRNA在AMS患者与不发病者之间显著差异表达,其中56个血浆microRNA在AMS患者中表达显著上调,37个显著下调(全部 p<0.05)。(2)AMS发病相关microRNA主要涉及低氧适应、能量代谢、血管生成及炎症反应相关信号通路调节AMS发病相关microRNA的功能,主要涉及低氧适应(HIF-1通路)、能量代谢(cAMP通路)、血管生成(VEGF通路)及炎症反应(MAPK、NF-κB、Toll样受体、NOD样受体及TNF等通路)等信号调节。(3)microRNA芯片检测结果可重复性强qRT-PCR 检测结果显示,与 Non-AMS 相较,miR-676-3p、miR-181b-5p、miR-193b-5p和miR-3591-3p在AMS患者血浆中的表达水平显著上调,与microRNA芯片结果趋势一致(全部p<0.01)。(4)miR-676-3p、miR-181b-5p 及 miR-3591-3p 可作 AMS 辅助诊断指标ROC 曲线分析显示,miR-676-3p、miR-181b-5p 及 miR-3591-3p 对 AMS 发病的诊断效能分别为 0.713(95%CI=0.588-0.838,p<0.01)、0.735(95%CI=0.614-0.855,p<0.001)和 0.805(95%CI=0.700-0.911,p<0.001)。二、miR-181b-5p是炎症反应的负调节分子(1)miR-181b-5p涉及炎症反应通路的调节miR-181b-5p的靶基因涉及的信号通路主要为炎症反应相关的信号通路,如:MAPK、NF-κB、NOD样受体、Toll样受体等通路。其中,NF-κB通路中重要基因“蛋白激酶C-δ(protein kinase C delta,PRKCD)”被预测为 miR-181b-5p 的靶基因。(2)miR-181b-5p在小鼠高原脑水肿模型中显著上调表达与对照组相较,小鼠高原脑水肿模型的白细胞中miR-181b-5p、IL-1β、IL-6和TNF-α表达水平显著上调(全部p<0.05)。该结果提示miR-181b-5p与炎症反应之间的潜在关系。(3)miR-181b-5p可通过抑制PRKCD减轻巨噬细胞炎症反应外源性在RAW264.7细胞中过表达miR-181b-5p,可以显著下调细胞中IL-1β、IL-6和TNF-α mRNA表达水平,并降低细胞上清中IL-1β、IL-6和TNF-α含量(全部p<0.01)。而外源性在RAW264.7细胞中抑制miR-181b-5p表达后,结果与过表达相反(全部p<0.01)。经双荧光素酶报告基因实验鉴定,PRKCD是miR-181b-5p的靶基因(全部p<0.01)。三、平原血浆和唾液microRNA可作为AMS发病风险预测生物学标志物(1)平原血浆microRNA分子可作为AMS发病风险预测生物学标志物三个平原血浆microRNA 分子(miR-1183、miR-15b-5p及miR-23b-5p)构成的生物标志物组合对AMS发病风险的预测效能可以达到0.872(95%CI=0.836-0.903,p<0.001)。(2)调控抗炎症能力储备可能是血浆microRNA组合生物作用基础GO分析结果显示:miR-1183,miR-15b-5p和miR-23b-5p参与调控免疫系统过程、固有免疫反应、MAPK信号通路、MyD88-Toll样受体信号等经典炎症反应通路调节。相关性分析显示,miR-1183、miR-15b-5p和miR-23b-5p与血浆炎症因子(IL-1β,IL-6和TNF-α)含量显著相关(全部p<0.01)。(3)平原唾液miR-134-3p和miR-15b-5p可预测AMS发病风险平原时唾液miR-134-3p和miR-15b-5p组合对AMS发病风险的预测效能可达到0.811(95%CI=0.731-0.876,p<0.001)。(4)miR-134-3p和miR-15b-5p涉及调控炎症反应GO分析结果显示:miR-134-3p和miR-15b-5p可以共同调控MAPK及Toll样受体信号通路等经典炎症反应通路。四、HAPC患者microRNA表达谱特征(1)HAPC患者和健康对照间的microRNA表达谱存在显著差异RNA-seq检测筛选到44个血浆外泌体microRNA在HAPC患者和同海拔健康对照组间存在显著差异,其中3 3个microRNA在HAPC患者中表达显著上调,11个microRNA表达显著下调(全部p<0.05)。(2)HAPC发病相关microRNA主要的分子生物学功能上述HAPC发病相关microRNA分子涉及鞘脂类、细胞内吞、线粒体自噬、Ras、TNF、MAPK及Hedgehog等多个信号通路的调节。(3)RNA-seq检测结果可重复性强qRT-PCR检测结果显示,与同海拔健康对照相比较,miR-144-3p、miR-210-3p,miR-19b-3p及miR-21-3p在HAPC患者血浆外泌体中的表达水平显著上调(全部p<0.01)。该结果与RNA-seq检测结果趋势一致。五、miR-144-3p是抗氧化损伤通路的负向调节分子(1)miR-144-3p可能涉及抗氧化损伤通路的调节miR-144-3p的靶基因显著富集于HGF受体、NRF2-抗氧化损伤、Sonic Hedgehog及MAPK等信号通路。进一步分析发现“核因子E2相关因子2(nuclear factor E2-related factor 2,NRF2)”是 miR-144-3p 的预测靶基因。(2)红细胞miR-144-3p表达上调与其抗氧化能力下降及氧化损伤加重密切相关与对照组相较,在HAPC患者及大鼠模型的红细胞中,miR-144-3p表达水平显著上调(全部p<0.05)。进一步相关性分析发现,红细胞中miR-144-3p与氧化指标ROS和MDA显著正相关(全部p<0.05),与抗氧化指标SOD和GSH显著负相关(全部p<0.05)。(3)miR-144-3p可能通过抑制NRF2削弱红系细胞抗氧化能力外源性在K562细胞中过表达miR-144-3p,可以显著抑制抗氧化物SOD1、CAT、GCLC、GCLM、GPX1和NQO1mRNA表达水平,加重细胞氧化损伤(全部p<0.01)。而在K562细胞中外源性抑制miR-144-3p表达后,结果与过表达相反(全部p<0.01)。双荧光素酶报告基因实验证实,NRF2是miR-144-3p的靶基因(全部p<0.001)。结论(1)AMS患者和不发病者间的microRNA表达存在显著差异;差异microRNA主要涉及低氧适应、血管新生、能量代谢及炎症免疫等信号通路调节;急性低氧后miR-181b-5p表达不足,导致对NF-κB信号通路重要基因PRKCD抑制减弱,继而加剧外周炎症反应及神经炎症损伤,可能参与AMS发病。(2)平原血浆microRNA 分子(miR-1183、miR-15b-5p和miR-23b-5p)构成的生物标志物组合在可作为汉族青年男性人群AMS发病风险预测的新型生物学标志物;平原唾液miR-134-3p和miR-15b-5p组合可作为汉族青年男性人群AMS发病风险预测的无创生物标志物。(3)HAPC患者和同海拔健康人的microRNA表达存在显著差异;差异microRNA涉及鞘脂类、线粒体自噬、Ras、TNF、MAPK及Hedgehog等多条信号通路的调节;miR-144-3p通过抑制抗氧化损伤信号通路重要调节因子NRF2,继而削弱红系细胞抗氧化物能力,导致红系细胞的氧化损伤加重和功能紊乱,可能参与HAPC的发生发展。
其他文献
背景乳腺癌是世界上女性最常见的恶性肿瘤之一,严重威胁人类健康。随着诊疗技术的不断进步,使更精准的癌症诊断以及更有效的癌症治疗成为了可能。然而,仍有许多患者最终对治
学位
信息技术与产业实践的深度融合,使得以双边平台为代表的平台经济和商业模式迅速兴起。截止2020年6月,全球市值最高的十家企业中有七家是平台型企业。伴随着中国经济高质量发
农业承担着保障国家粮食安全、农村繁荣稳定、农民生计等重要基础功能,确保农业持续健康稳定发展对于国民经济和社会发展均具有重要意义。近年来,我国农业农村经济平稳运行,
学位
会馆剧场,指会馆内专门用于戏曲演出及观赏的场所。本论文以会馆剧场为主要研究对象,基于对会馆剧场的田野调查及搜集、整理与会馆剧场相关的文献材料,运用戏曲学、宗教学、
改革开放以来,我国经济持续多年中高速增长,但这种中高速增长的背后却是以高耗能、高污染、低效率为代价,环境污染必然影响制造业的可持续发展。近年来,随着“绿水青山也是金
背景及目的:脑胶质瘤(Glioma)是成人颅内最常见的原发性肿瘤,占成人颅内原发性恶性肿瘤的百分之七十以上,世界卫生组织(World health organization,WHO)根据其细胞异型性、核分裂
商业银行经营效率的提升是推动银行业可持续发展的内在动力,也是优化金融资源配置与促进金融服务实体经济的关键所在。随着我国经济步入新常态,进一步深化金融供给侧结构性改
玉米籽粒收获是玉米生产全程机械化主要环节之一,如今在玉米籽粒机械化收获中广泛采用玉米籽粒联合收获机,清选装置作为籽粒联合收获机的“消化系统”直接影响联合收获机作业