超分辨定位成像中实验分辨率的影响因素和优化方法

来源 :华中科技大学 | 被引量 : 0次 | 上传用户:zzy101
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
超分辨定位成像提供了突破衍射极限的空间分辨率,为研究生物大分子及细胞器的精细结构、分布规律及功能提供了新的成像工具。分辨率是超分辨定位成像设备的重要参数,但成像实验中获得的分辨率(称为实验分辨率)受多种因素影响,通常会低于设备标称的系统分辨率。已有研究往往偏重于影响系统分辨率的因素(如定位算法、弱光探测方法等),对具体实验操作(如生物样品制备、成像过程控制等)研究较少,影响了实验成功率和实验分辨率。本论文以超分辨定位成像的实验分辨率作为量化指标,系统研究了标记策略和成像过程控制中的一些因素对实验分辨率的影响;并通过优化Ex STORM(膨胀-超分辨定位成像)的标记效率,扩展了Ex STORM的适用范围,提高了实验分辨率。主要内容简述如下:(1)实验对比了不同标记策略(荧光分子、连接误差)对实验分辨率的影响。结果表明,亮度更高的荧光染料Alexa Flour 647比荧光蛋白m Eos3.2有更高的实验分辨率,分别为26.74 nm和64.90 nm;深红色发射光谱的荧光染料Alexa Flour 647比红色发射光谱的荧光染料CY3B有更好的超分辨定位成像结果。另外,在四种标记策略中,随着连接误差的增加,对实验分辨率的恶化也增加,其中GFP-纳米抗体组合的标记策略对实验分辨率影响最小(12.81 nm)。(2)实验研究了不同成像过程控制(激光照明、后漂移校正方法)对实验分辨率的影响。结果表明,全内反射照明在样品较薄区域和较厚区域分辨率相差不大,分别为50.77 nm和57.07 nm,但由于其层析效果无法观测到完整的深层结构;高入射角照明在样品较厚区域分辨率会有降低,分别为53.98 nm和69.19 nm,深层结构成像较为完整。另外,本论文研究发现,对于线状结构来说,可以使用基于互相关和基于标定点两种方法进行漂移校正,而对于点状结构只能使用基于标定点的方法。(3)提出了一种兼容样品物理膨胀成像和超分辨定位成像的间接标记方案,增加了Ex STORM的适用范围。跟已有方法相比,本论文提出的生物素-链霉亲和素间接标记方案具有更高的标记效率,能够用于抗原密度低的实验场景(如核孔成像),实现了样品的物理膨胀成像(2.37倍放大)。借助于样品的物理膨胀,本论文对核孔结构进行了超分辨定位成像,获得了核孔八角形精细结构,其图像分辨率为13.08nm,比单独使用超分辨定位成像时的分辨率提高了2.56倍。
其他文献
理解信息如何在神经网络中被处理的原理是神经科学研究的中心目标。眶额叶作为前额叶的主要结构之一,执行很多高级的功能,例如奖赏、控制和抑制不恰当的行为、对特定行为结果进行评估等。眶额叶的损伤往往会导致精神疾病,如抑郁症和强迫症。眶额叶的众多功能是通过其神经环路实现的,因此研究眶额叶的神经环路机制是解析其功能和复杂疾病机理的前提。眶额叶作为异质性的脑区,包含不同的神经元类型。然而,这些不同类型的神经元全
学位
肿瘤转移导致90%的人类癌症患者死亡。大多数实体肿瘤常通过淋巴系统发生转移。乳腺癌是女性高发的恶性肿瘤之一,乳腺癌患者中发生腋窝前哨淋巴结转移的五年生存率,比未发生转移的患者降低约40%。目前临床上判定乳腺癌是否已经发生了远端转移所采用的手段主要是实施前哨淋巴结切除活检(Sentinel lymph node resection biopsy,SLNB)。但前哨淋巴结切除的同时会引发一些副反应,如
学位
由于存储需求的快速增长,硬盘作为最主要的存储介质,其存储密度急需提升。然而,硬盘存储密度的提升近10年因受困于“三难问题”而发展趋缓。虽然热辅助磁记录等技术有进一步提升密度的空间,但潜力不大。光致磁变现象的发现不仅为硬盘存储密度大幅提升提供了一条全新思路,其亚皮秒级的磁动力学过程还可大幅提升硬盘的写入速度。因此,光致磁变现象吸引了众多领先的研究机构的关注。尽管经过全球学者的努力,在光致磁变的实验方
学位
目前,随着光纤激光器功率的攀升,传统小芯径光纤纤芯内的光功率密度不断增加,带来严重的非线性效应。同时简单地增加纤芯面积会引起光束质量和模式不稳定阈值下降等一系列的问题。降低纤芯中光功率密度,进一步提高运转功率的主要技术方案是使用新型大模场单模运转光纤。但现有的新型光纤,一方面由于难以弯曲、制备工艺难度过高等原因,尚未得到大规模生产与应用。另一方面,更大的模场面积与更高的运转功率也带来了更严重的光热
学位
聚类作为数据挖掘的主要技术之一,经历了半个多世纪的发展,产生了大量优秀的聚类方法。尤其随着近十年来深度学习技术的飞速发展及广泛应用,基于深度学习的聚类将聚类研究推向了一个新的高度。为了更全面地了解某一事物,人们往往从不同的角度或不同的途径对同一事物进行刻画,获取的数据集称为多视图数据。如何充分挖掘不同视图角度的特征,进而提升聚类性能显得尤其重要。现有的大多数聚类方法仍然存在着特征提取不全面这一问题
学位
运动皮层在运动的产生、控制及学习中起着至关重要的作用。运动皮层的功能亚区——初级运动皮层和次级运动皮层,主要由谷氨酸能神经元和γ-氨基丁酸(γ-aminobutyric acid,GABA)能神经元组成,且通过整合不同的输入和输出环路的信息进而参与不同的调控过程。因此解析运动皮层的连接环路结构对理解其复杂功能的机制至关重要。已有研究对其局部连接环路和长程输出连接环路进行了较为详细的剖析。但是受限于
学位
在深入实施知识产权强国战略的背景下,提高高校专利撰写质量、促进其转化运用十分重要。选取26所"双一流"高校198113件专利为研究对象,从授权、有效、转化三个维度测度专利质量,基于Logit模型,实证文本页数、权利要求数、首权字数等指标与专利质量之间的关系。研究结果表明,专利撰写在一定程度上呈现出"多多益善"的特征:(1)文本页数、首权字数显著正向影响专利授权,权利要求数显著负向影响专利授权;(2
会议
三维有机-无机铅卤钙钛矿太阳能电池的能量转换效率已达到25.5%。然而,三维钙钛矿对水、氧和光等周围环境敏感,严重阻碍了其商业发展和实际应用。近年来,二维钙钛矿由于优异的湿度稳定性,受到研究工作者的广泛关注。但是,有机和无机层交替堆积形成的多量子阱结构的二维钙钛矿由于较大的激子束缚能、宽的带隙和较高的缺陷态密度等原因使其电池的效率低于三维钙钛矿。针对此问题,本论文通过开发新型二维钙钛矿材料、调控层
学位
由于高比表面积,高电导率,良好的电化学活性以及优异的化学稳定性等特点,二维碳基化合物在能源存储和催化等领域极具应用前景。在储能应用中,二维碳基化合物兼具了快速的电子和离子传输特性,不仅可作为超级电容器电极材料,也能和其他材料进行复合,实现高载量下高性能的稳定输出。此外,二维碳基化合物具有丰富的活性位点和高催化活性也可作为电解水催化剂。目前,二维碳基化合物在众多研究领域展示了其潜在优势,但要实现其真
学位
纳米发光材料因其具有荧光寿命长,发光效率高,波长可调谐等优良的光学性能,已经被广泛应用于成像、传感、显示等多个领域。在众多的纳米发光材料中,纳米半导体材料和金属有机框架材料是两种具有代表性的材料。目前纳米发光材料的合成方法已经比较成熟,但是其应用还处在起步阶段,主要是因为现有的集成技术无法匹配纳米发光材料的集成需求,所以急需寻找一种简单有效的办法推进纳米材料的应用发展。基于以上目的,本工作提出采用
学位