重组微生物全细胞催化高效合成丙谷二肽

来源 :大连理工大学 | 被引量 : 0次 | 上传用户:a4205685
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
丙谷二肽(L-Alanyl-L-glutamine,Ala-Gln)具有溶解度高、热稳定性好及分解速率快等优势,已经成为一种替代谷氨酰胺(L-Glutamine,Gln)的新型营养补充剂,被广泛应用于食品、保健品和医药等领域。α-氨基酸酯酰基转移酶(α-amino acid ester acyl transferase,Aet)能以丙氨酸甲酯盐酸盐(L-alanine methyl ester hydrochloride,AlaOMe)和Gln为底物直接合成Ala-Gln,基于表达Aet的微生物合成法因其原料廉价易得、反应步骤少、反应条件温和、环境污染小且副产物少,可以作为工业化生产Ala-Gln的新方法。然而,Aet催化合成Ala-Gln过程存在反应时间长和底物转化率低等问题,限制了其在Ala-Gln工业化生产中的应用。本论文的研究工作构建了异源表达Sphingobacterium siyangensis来源Aet(SsAet)的重组大肠杆菌和重组酿酒酵母,通过菌体的重复利用及絮凝自固定化技术,解决了上述问题,为实现Ala-Gln安全、绿色且高效生产奠定了基础。取得的主要研究结果如下:首先,构建异源表达SsAet的重组大肠杆菌高效合成Ala-Gln。以最常用的表达型宿主 BL21(DE3),构建了重组大肠杆菌 BL21(DE3)-pET29a-SsAET(BPA),发现 BPA表达了大量的包涵体,影响了其催化活性。通过更换有助于蛋白二硫键形成的宿主,提高蛋白的溶解性,其中Origami 2(DE3)-pET29a-SsAET(OPA)的SsAet可溶表达量最高,且催化活性是BPA的1.4倍。进一步优化了 OPA的诱导条件和全细胞催化合成Ala-Gln的反应条件,确定了最佳的诱导条件:温度16℃、诱导OD620=0.25、诱导时间12h及IPTG浓度0.6 mmol/L;最佳的反应条件:温度25℃、pH值8.5、反应溶液硼酸盐缓冲液及底物摩尔配比AlaOMe/Gln=1/2。在最优条件下,以OPA作为合成Ala-Gln的全细胞催化剂,反应过程最短可在5 min内完成,获得最高的底物转化率为94%,而比生产强度可高达1.78 g/L·min-1·OD620-1,是目前国内外文献中报道的最高水平。除此之外,OPA具有良好的重复利用性,经五个循环批次反应仍能维持80%以上的催化活性,实现了循环高效合成Ala-Gln。但是,在相同的细胞浓度和反应时间内,OPA全细胞的催化效率比裂解液降低了 21%,发现了物质扩散阻力的存在。其次,构建表面展示SsAet的重组酿酒酵母。为了克服物质扩散阻力和大肠杆菌表达系统潜在的生物安全问题,以生物安全性的酿酒酵母作为表达宿主,将SsAet以N端和C端锚定两种方式展示在酵母细胞表面,通过免疫荧光实验,证明了 SsAet已成功固定在酵母细胞壁上;综合比较菌株生长情况和催化活性,选择N端锚定作为SsAet在酵母表面展示的方法。在此基础上,通过密码子优化提高了 SsAet表达量,发现经密码子优化的EBY100-pYD1-SsAETs(EPagaAs)在20 min时Ala-Gln合成量是未经密码子优化菌株的1.7倍;反应终点从40 min缩短至30 min,生产效率提高了 33%。但是,EPagaAs合成Ala-Gln的反应时间长,且底物转化率仅为OPA的58%,推测酵母表达系统中蛋白翻译后修饰可能影响了 SsAet的催化活性。然后,针对上述问题,研究了蛋白翻译后修饰对SsAet的影响。以糖基化程度低的毕赤酵母为表达宿主,通过密码子优化,提高蛋白表达量和催化效率,构建了分泌表达SsAet的重组毕赤酵母GS115-pPIC9-SsAETP(GPAP)。以GPAP为研究对象,对重组毕赤酵母的诱导条件和合成Ala-Gln的反应条件进行了优化,确定了最佳的诱导温度为26℃、诱导时间为3d及甲醇补加量(v/v)为1.5%;最佳的反应温度为28℃、反应pH值为8.5、反应底物为AlaOMe及底物摩尔配比AlaOMe/Gln为2/1。在最优条件下,GPAP的底物转化率仅为OPA的71%左右,再次验证了蛋白后修饰作用对SsAet催化活性的影响。在此基础上,构建了胞内和分泌表达SsAet的重组毕赤酵母,发现胞内表达SsAet重组菌株的催化活性明显高于分泌表达的,其中胞内表达且去掉内源信号肽的菌株KM71-pPIC3.5K-SAETP1800(KP3.5KAP1800)合成Ala-Gln的底物转化率最高为80%,能达到OPA的90%左右,比分泌表达的对比菌株提高了 41%,阐述了胞内表达SsAet和去掉内源信号肽是提高酵母表达系统中SsAet催化活性的有效方法。通过SDS-PAGE和Western blotting发现了分泌型SsAet分子量的增加;通过去糖基化酶的切除,证明了分泌型SsAet中糖基化修饰的存在;通过LC-MS证明了糖基化修饰发生在第442位Asn残基上;通过圆二色光谱仪鉴定了胞内和分泌型SsAet的二级结构,发现了两者的显著性差异,证明了糖基化修饰是影响SsAet结构和催化活性的重要因素。最后,基于上述研究结果,构建了自固定化重组酿酒酵母高效合成Ala-Gln。使用高拷贝数质粒构建了胞内表达SsAet且去掉内源信号肽的EBY100-pRS424-SsAETs1800(EP424AS1800)。通过培养和反应条件的优化,EP424AS1800能在5 min内获得高达74%的底物转化率,是表面展示重组菌EPagaAs的1.44倍,能达到OPA的83%以上;反应时间比EPagaAs缩短了 80%以上,生产效率提高了 5倍;比生产强度高达1.28 g/L·min·1·OD600-1。通过导入絮凝基因FLOI,得到了毫米级絮凝颗粒且催化活性不受影响的EP424As1800-FLOI,实现了其在反应器内的自固定化。EP424AS1800-FLO1经过十次循环催化反应后仍能保持稳定的催化活性,实现了连续高效合成Ala-Gln。本论文的研究为Ala-Gln安全、绿色且高效的工业化生产奠定了基础。
其他文献
随着反应扩散模型研究的深入,并为了能更好地满足实际工业领域的需求,越来越多复杂的反应扩散模型开始出现。其中,为了能够更好地刻画自然现象中物种关于空间中的定向运动问
学位
发展可再生能源是应对能源危机、环境污染,实现人类社会可持续性发展的有效措施。将木质纤维素进行酶水解制备可发酵糖进而生成燃料乙醇,是开发可再生生物质能源的重要途径。
习总书记指出中国经济进入新常态:从要素驱动转向创新驱动。要实施创新驱动发展战略,增强企业的自主创新能力是关键,这就要求企业不断加大研发投入,给企业创新提供动力。那么
太阳能既是一次能源,又是用之不尽的可再生能源,它具有储存量丰富、无需运输和清洁等天然优势。太阳能已经逐渐进入通信、家用、工农业等人类活动的各个方面,合理利用可以使
有机-无机杂化钙钛矿材料是近几年兴起的一类具有巨大应用前景的新型半导体光电材料,因其独特的光-电/电-光转换性质成为构建高效、廉价的太阳能电池和发光器件的理想材料。
滚动轴承是旋转设备中重要的基础零部件之一,其性能与寿命直接影响着装备的工作性能、可靠性和安全性。轴承热特性及其影响对轴承性能和寿命极为重要,目前对于滚动轴承工作温
聚乳酸(PLA)具有生物相容性、生物降解性、可回收性和易加工性等优点,是一种生物环保型的热塑性塑料,目前已应用于一次性用品、食品包装、生物医学等方面。然而,易燃性这一缺点限制了 PLA材料的广泛应用。为了提高PLA的阻燃性能、保持其环境友好性,本文在综合分析PLA阻燃技术的基础上,提出了两种基于生物质制备PLA阻燃复合材料的方法。主要研究内容如下:1.以生物质香蕉皮粉(BPP)作为碳源,硅凝胶包裹
化石能源的日益减少及社会经济对能源需求的增加,驱使人们发展非常规油品(生物油、煤焦油、页岩油等)来实现对化石能源的逐步取代。然而,非常规油品中含有大量不适宜作为燃料
克氏针茅(Stipa krylovii Roshev.)隶属禾本科(Gramineae)针茅属(Stipa),多年生旱生草本植物,是欧亚典型草原的主要建群种,因其适应干旱的环境,分布范围广,并且是连接东西部草原及