变径管和T型管内颗粒流压降及管道振动实验研究

来源 :东北石油大学 | 被引量 : 0次 | 上传用户:lhihxk
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文以石油天然气开采中的压裂作业为工程背景,针对携砂压裂液引起压裂管柱和地面管汇的压降和振动问题,对典型的变径管和T型管结构受不同颗粒流参数影响的压降及管道振动规律进行了实验研究,为此类问题的理论研究和工程应用提供了实验依据。1.依据压裂作业流程,设计了实验装置的四大系统,实验管道的变径和T型结构尺寸,以及实验流程及实验工况;依据循环管路压降和动力装置参数计算,优选了实验装置的主要部件;搭建并调试了变径管和T型管内颗粒流的压降及管道振动实验装置。2.针对变径管的单级和多级变径结构,采用正交实验法分别设计了35种和41种实验工况。实验表明:(1)变径管内颗粒流及清水压降实验结果与理论结果相对误差均小于10%,验证了理论计算公式选用的准确性。(2)通过变径管正交实验全因素分析,得到了影响因素对压降及管道振动影响的主次顺序。(3)对于单级变径管,流速越大、砂比越大,变径比越小、变径长度越长,颗粒群在变径结构内的碰撞、堆积越严重,颗粒流压力损失越大,管道振动越剧烈。流速增加,使压降增大了1.84倍,振动幅值平均值增大了1.30倍;变径长度增加,使压降增大了1.13倍,振动幅值平均值增大了1.80倍;砂比增加,压降增大了1.07倍,振动幅值平均值增大了1.22倍。(4)对于多级变径管,流速越大、砂比越大,变径比越小、变径结构组数越多,颗粒群在多级变径结构中碰撞几率急剧增加,管道振动更剧烈,压降越大。流速增加,使压降增大了1.72倍,振动幅值平均值增大了1.32倍;变径结构组数增加,使压降增大了1.19倍,振动幅值平均值增大了1.36倍。3.针对单级单出口、单级和多级双出口T型管,采用正交实验法均设计了12种实验工况。实验表明:(1)通过T型管正交实验全因素分析,得到了影响因素对压降及管道振动影响的主次顺序;流速越大、砂比越大,变径比越小以及变径结构组数越多,T型管压降越大,管道振动更剧烈。(2)对于单级单出口T型管,流速增加,使压降增大了1.63倍,振动幅值平均值增大了1.27倍;砂比增加,使压降增大了1.12倍,振动幅值平均值增大了1.48倍。(3)对于单级双出口T型管,随着流速和砂比的增加以及变径比的减小,压降以及振动幅值平均值呈增加趋势,但压降数值及振动加速度增长幅度均小于单级单出口T型管。(4)对于多级双出口T型管,当流速增加,压降增大了1.58倍,振动幅值平均值增大了1.27倍;砂比增加,压降增大了1.11倍,振动幅值平均值增大了1.16倍。随着变径结构组数的增加,管道系统的固有频率及刚度增加,使振动频率增加,使管壁振动减缓,频谱幅值减小。
其他文献
为解决燃油内燃机发电机组使用过程中带来的环境污染问题,采用天然气内燃机发电机组实现“以气代油”并将该技术推广应用,是目前动力系统发展的趋势。相比于燃油动力,天然气动力存在功率调节瞬态响应能力差、特性较软的问题。特别是在出现突变载工况时,天然气发电机组的输出功率无法与负载快速达到平衡,直接影响到发电网络频率和电压的稳定甚至造成机组停机。为解决这一问题,本文采用超级电容储能与天然气动力构成一体化发电系
学位
水力压裂是开采低渗透油气资源的核心技术。压裂作业时,携砂压裂液在管道输送过程中,流体的压力波动及颗粒群的碰撞、堆积,均会引起管道的振动与冲蚀,导致的管道疲劳失效、连接螺纹失效及管道局部破裂等,是亟待解决的工程问题。压裂管道输送携砂压裂液,涉及湍流动力学、颗粒群运动学和管道结构力学理论,是流固耦合领域的前沿课题。本文旨在建立颗粒群、流体及管道多物理场耦合动力学模型,编写相应的耦合求解程序,揭示颗粒流
学位
由双PWM变换器构成的永磁同步电机四象限驱动系统具有能量双向流动、功率因数高、网侧电流正弦度好等优势,在绞车、电梯等需要频繁往复运动的场合具有广泛应用前景。网侧与机侧独立控制的四象限驱动系统具有控制方法简单等优点,但其母线电容容量较大,同时存在负载突变时母线电压波动较大,成本高、体积大、寿命短等问题。如何降低负载变化时的母线电压波动,降低母线电容容量成为当前四象限运行的重要问题。本文针对永磁同步电
学位
往复压缩机是石油、化工等领域中核心的关键设备,承担着繁重的生产任务,其工作介质通常具有高温高压、有毒有害、易燃易爆、易腐蚀等特点。一旦发生故障,轻则会导致停产停机和经济损失,重则引起重大事故和人员伤亡,因此,亟需开展往复压缩机故障诊断研究工作。由于往复压缩机结构复杂,运行形式多样,其振动信号表现为较强的多源冲击、非线性、非平稳复杂特征,传统信号处理方法难以对其进行有效的故障特征提取。针对上述问题,
学位
本文研究改性磷石膏对超硫酸盐水泥(SSC)早期水化热、强度、孔溶液pH值、水化产物和微观形貌的影响。与通用硅酸盐水泥(CPC)体系相比,SSC体系早期水化速率较慢、水化热较低、诱导期延长、第二放热峰出现延后,表现出较低的早期水化特性,磷石膏的改性方式可调控早期水化速率和体系水化活性。SSC体系主要水化产物为钙矾石和C-S-H凝胶,浆体pH值稳定在11,强度与磷石膏特性有关,煅烧处理可提高其中后期强
期刊
随着制造业的转型升级,作为高端装备制造业核心技术之一的工业机器人性能也急需提高。现如今,为实现工业机器人中某些部位的往复运动常采用弧线电机,而传统弧线电机多为转子永磁型电机,永磁体利用率极低。定子永磁型磁通切换永磁电机的永磁体利用率高、安全性好,在有限转角驱动领域具有明显的优势。本文以磁通切换式弧线电机(Arc FSPM)为研究对象,对降低其转矩脉动、增加功率密度等问题进行了研究,对其工程应用具有
学位
固态功率控制器(Solid State Power Controller,SSPC)是一种兼具断路器保护和继电器开关功能的智能模块,在电子设备中得到越来越广泛的应用。叠层式结构是缩小SSPC体积、提高其功率密度的重要手段。然而叠层式结构所采用的连接体,会对产品电路设计、热性能产生较大影响,并且在温度、振动应力作用下层间连接体易发生失效,已成为制约SSPC可靠性提升的关键因素。本文以某国产叠层式SS
学位
内置式永磁同步电机由于功率密度高、控制方便、运行效果好等优点,广泛应用于压缩机驱动系统。传统的永磁压缩机驱动系统使用大容值的铝电解电容和功率因数校正(PFC)电路,以抑制母线电压波动和提高功率因数。但由于压缩机处于室外,母线电容受温度影响严重,已经成为降低驱动系统寿命的主要因素,同时PFC电路也增加了系统的体积和成本。近年来,为了提升系统的寿命和提升功率密度,薄膜电容由于受温度影响较小且可靠性高,
学位
双绕组永磁同步电机(Dual-winding permanent magnet synchronous motor,DWPMSM)通过绕组拓扑重构可实现低速大转矩、宽速域、宽高效区运行,是未来电动汽车电传动系统的重要选择方案,对其进行深入研究有助于提升电动汽车的整体性能。因此本文以电动汽车用双绕组永磁同步电机为研究对象,对其系统拓扑及其控制策略开展深入研究,主要工作有以下几个方面:首先,结合电动汽
学位
传统的化石燃料属于不可再生能源,且其储备量正逐渐减小,无法满足当今社会逐渐提高的能源消耗需求。同时,化石燃料在燃烧后会产生雾霾、酸雨等极为恶劣的自然灾害问题。氢能作为一种来源广泛、清洁环保、燃烧稳定性能好、热值高、存在形态多样化(气态、固态金属氢化物、液态)的可再生能源,可满足不同存储环境及作业环境的要求。但普通析氢电极过电位较高,大幅提升了析氢过程中的能源能耗,而Pt、Pb等贵金属电极造价高昂,
学位