光照条件下赤铁矿/亚硫酸盐体系降解有机污染物的机制研究

来源 :华中农业大学 | 被引量 : 1次 | 上传用户:psobb045
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
通过活化过硫酸盐(PDS/PMS)产生SO4·﹣可以显著去除水体中污染物质,但该工艺的固有缺陷限制了其广泛使用。例如,其成本太高;过硫酸盐较稳定,残存于处理过后的水体中,可能会引发未知的生化反应,对环境具有毒害作用;活化的催化材料多具有环境毒性。近年来,运用亚硫酸盐产生SO4·﹣降解有机污染物成为研究热点。与过硫酸盐相比,亚硫酸盐造价便宜,在环境水体中可以直接与溶解氧反应进而被完全消耗,对水体生态环境影响很小。另外,亚硫酸盐是工业生产中烟气脱硫产物,价格低廉,具有较高的环境效益和经济效益。因此,开展关于亚硫酸盐活化产生SO4·﹣的研究有重要意义。本论文以环境中常见的矿物材料-赤铁矿作为催化材料,在光照条件下,活化亚硫酸盐产生活性物种降解水体中的洛克沙胂。考察了不同因素对降解效果的影响;运用高效液相色谱(HPLC)、高效液相色谱串联质谱(HPLC-MS)对降解产物进行了分析;采用电子自旋顺磁共振仪(EPR)、X射线光电子能谱(XPS)等探讨了反应机制。主要结果如下:1.在不同的溶液pH下,降解污染物的主要活性物种不同。自由基淬灭实验,电子顺磁共振和质谱分析等表明,酸性或中性条件下(pH4-7),SO4·﹣是主要活性物种。在碱性条件下(pH8-13),利用甲基苯基亚砜作为分子探针发现其反应产物是甲基苯基砜,证明该体系中降解有机污染物的主要活性物种为高价铁Fe(Ⅳ)。2.不同pH条件下亚硫酸根离子与赤铁矿界面的配位机制的不同可能是诱导活性物质不同的原因。在酸性条件下生成以氧原子为中心的铁-亚硫酸盐配位物;在pH>9的情况下,生成以硫原子为中心的铁-亚硫酸配位物。这种配位形式的变化诱导了电子空穴与还原剂的不同反应:在酸性条件下,电子空穴优先与亚硫酸根反应,进而生成SO4·﹣,但在碱性条件下优先与界面Fe(Ⅲ)反应生成Fe(Ⅳ)。3.可以利用亚硫酸钙代替亚硫酸钠作为水体中亚硫酸根离子的来源。亚硫酸钙的缓释能力使得溶液中溶解的亚硫酸根离子浓度低于相同浓度的亚硫酸钠反应体系,极大的抑制亚硫酸根离子与活性物种的反应,进而促进活性物种与目标物质的反应。4.赤铁矿/亚硫酸盐/光照体系具有去除不同有机污染物的能力。在多次循环实验之后,该体系仍然表现了良好的去除能力。
其他文献
我国长江中下游地区,油菜种植一般为稻油轮作,在前茬水稻收获后,接茬油菜种植采用精量联合直播方式,一次性完成耕整地、播种施肥等油菜种植工序,具有轻简高效、节本增产等显著优势。长期的研究与生产实践发现,随着水稻产量的逐年增加,水稻收获后秸秆浮草量大,且稻茬田土壤黏重板结,在秸秆禁烧的条件下,联合直播作业机具易发生触土工作部件缠绕壅堵、种子落在秸秆上难以出苗等问题,稻茬田油菜直播时前茬秸秆浮草处理成为一
学位
生物相关谱(Biologically Relevant Spectrum,BRS)和.三维生物相关谱.(ThreeDimensional Biologically Relevant Spectrum,BRS.-3D)是本课题组提出的两种分子描述符,它们可用于预测化合物的理化性质、ADME/T特性、潜在生物活性,以及虚拟筛选、QSAR分析等方面。由于计算量较大的原因,目前并没有向外部提供BRS和BR
学位
农药的广泛应用使全球粮食生产能够支持人口增长的需求。目前市面上使用的农药以化学农药占主导,然而,不合理的农药施用方式产生了一系列生态环境问题。在新药的开发耗时又耗资的情况下,开发高效、安全、环境友好、低成本的新型农药就显得尤为重要,缓控释农药能较好地满足这些条件。本文以疏水性农药胺苯磺隆(ethametsulfuron-methyl,ESM)和亲水性农药吡虫啉(imidacloprid,IMI)为
学位
棉花生产的天然纤维是纺织工业的重要原料之一。天然彩色棉是指在自然条件下纤维能够呈现出一定色泽的棉花。棕色棉作为彩棉的主要类型,相关研究和应用都最广泛。相比于白棉,棕色纤维减少了纺织过程中所需的漂白印染等工序,进而减少了工业污染和纺织成本。因此,棕色棉成为一种环保资源,同时兼具纺织成品颜色自然、质地柔软、保温等特点。然而,天然棕色棉的产量和纤维品质较白棉差,单纯依靠传统的育种方法很难实现棕色棉产量和
学位
土壤侵蚀威胁全球粮食安全,影响生境质量,阻碍可持续发展。随着粮食需求增长与耕地土壤保护的矛盾日益凸显,防治耕地土壤侵蚀已成为农业生态领域热点问题。各国粮食需求通过农产品贸易得到满足的同时导致耕地土壤侵蚀压力的潜在转移,致使本地发生的侵蚀与异地农产品消费之间存在空间分离现象。明确国际农产品贸易对全球耕地土壤侵蚀的影响对于深入理解土壤侵蚀演变机理、提出合理的侵蚀治理策略意义重大。本研究以2017年全球
学位
病毒流行不仅严重危害人类的健康,而且造成巨大的经济损失,发展抗病毒药物是控制病毒流行的主要手段之一。金属纳米材料具有抗病毒活性及良好的生物相容性,未来有望发展成为新一代的抗病毒药物。如何进一步提高金属纳米材料的抗病毒效果是当前需要解决的一个关键问题。本论文以中药活性成分(甘草酸(GA)、姜黄素(Cur))为修饰试剂,合成了甘草酸修饰的金纳米粒子(GA-Au NPs)及姜黄素修饰的铜簇(Cur-Cu
学位
随着现代社会的不断发展,化石燃料的使用不可避免地造成了环境污染以及能源危机等问题,所以亟需开发绿色、经济以及高效的新型能源来替代化石燃料的使用。氢能源具有来源广泛、危险系数小且二次燃烧无污染的优点,是新型能源的最佳选择。光电化学(PEC)分解水制氢是目前最具潜力的制氢方案,其利用水资源与太阳能这类十分丰富的资源;产物主要为氢气与氧气,对环境无污染。因此,光电化学(PEC)分解水受到了研究者的广泛关
学位
抗生素抗性基因(Antibiotic resistance genes,ARGs)广泛分布于土壤、水体和空气等环境介质中,在近年被国内外环境科学家定义为一种新型环境污染物,严重威胁着全球生态安全。传统畜禽养殖模式高度依赖抗生素,使畜禽肠道微生物选择出高丰度和高多样性的ARGs,其通过养殖粪污或粪肥扩散进入自然环境,促进了环境中ARGs的蓄积。我国自2020年实行饲料禁抗,但近年在饲料禁抗实践中却发
学位
积分器在模拟电路和脉冲数字电路中扮演了重要角色,它的功能包括实现波形转换,相移以及消除失调电压等等。然而,运算放大器所引入的零点漂移以及电容器的充放电过程中产生的固有泄漏误差,使得传统的电阻-电容积分器(RC积分器)无法胜任较长时间内的高精度的积分运算工作。为了解决这一问题,许多基于RC积分器的改良方案被设计并广泛使用在托卡马克装置的积分电路中,但这些改良方案的代价是更复杂的电路和更高的功耗,并且
学位
内毒素是一种外源性致热原,进入机体易导致炎症、发热等症状,严重时危及生命。因此,在环境、食品以及医药等领域对内毒素进行检测和去除显得尤为必要。建立内毒素的检测和去除方法离不开良好的亲和试剂。聚合物纳米颗粒作为一种高比表面积,高吸附能力的亲和试剂在生物分子的检测和去除方面应用广泛,其优越性能取决于侧链结构中的功能单体。核酸适配体作为一种高吸附力,高特异性的亲和探针已经应用于内毒素的检测。因此,本项目
学位