基于化学和生物信息构建评价化学毒性的混合交叉参照模型

来源 :北京工业大学 | 被引量 : 0次 | 上传用户:darksmile11
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在新药研发过程中,需要对候选化合物的安全性进行评价,主要采用交叉参照方法来填补其毒性数据空白。传统的交叉参照方法主要是基于化学相似性原理发展起来的,该原理主要参照化合物的结构、活性和物理化学性质方面的信息。但是,化合物的毒性一般都与复杂的毒性机制相关联,因此,当预测新化合物的毒性时,仅仅基于化学相似性的交叉参照方法不能准确评价其毒性,经常出现“活性悬崖”问题,即化学结构高度相似,毒性结果却完全不同。
  本研究提出了一种改进的交叉参照方法,用于化合物分子的毒性预测。研究采用以下2个数据集,包括Ames致突变数据集(包含3,979个化合物)和大鼠急性口头毒性数据集(包含7,332个化合物)。首先,基于3种机器学习算法建立定量结构.毒性关系(Quantitative Structure Toxicity Relationship,QSTR)模型,预测一个数据集中的全部靶标化合物的潜在毒性;然后,在PubChem数据库中搜索靶标化合物相关的生物实验数据,被选择的每个生物实验应至少包含5个活性反应信息,这些生物活性反应信息被整合成一个综合的生物表达谱,计算生物相似性;最终,采用化学相似性搜索方法找出化学最近邻分子后,综合化学和生物相似性两种指标搜索“化学&生物最近邻分子”,完成“混合交叉参照”建模分析。研究结果表明,与仅基于化学信息的传统交叉参照方法(如,QSTR模型,化学相似性搜索)对比,混合交叉参照模型在预测准确率方面表现出一定的改进,Ames致突变数据集的准确分类率CCR从0.80提高到0.82,大鼠急性口头毒性数据集的毒性预测值和实验值的相关性R2从0.33提高到0.54;此外,发现8个与“活性悬崖”的潜在毒性机制高度相关的生物实验。
  综合以上,混合交叉参照模型可以作为毒性预测领域一种有应用前景的计算工具,来预测复杂结构化合物的潜在毒性(前提是该化学分子的PubChem生物活性数据可获得)。在这种情况下,考虑蕴含生物实验信息的生物表达谱将为解决传统交叉参照研究中的“活性悬崖”问题提供新思路,并有助于揭示导致该问题产生的潜在毒性机制。在大数据时代,本研究工作结合人工智能发展潮流,利用大数据技术方法进行计算毒性学研究,改进了传统交叉参照方法。
其他文献
背景:  干细胞是指在一定条件下具有增殖和分化潜能的细胞,它具有自我更新复制的能力,能够产生高度分化的功能细胞。按其存在的不同时期,可以分为胚胎干细胞和成体干细胞。成体干细胞是指一群分布在成体组织中尚未分化的,具有自我更新,构建和补充某种组织的各种类型细胞的潜能的干细胞,又称组织特异性干细胞。科学家已经在多种组织和器官内发现有成体干细胞的存在,如造血干细胞,神经干细胞,上皮干细胞等。目前,关于宫颈
工作目的:目前以纳米金颗粒为基础的药物载体的研究仍有一些局限,例如结构尺寸较为固定,响应灵敏度、效率较低,不易调控,响应区间宽,表面修饰物分子量过大,不易穿透肿瘤组织,易在体内积聚,生物相容性较差等缺点。故我们在探索不同修饰方式对金颗粒影响的基础上,针对目前载体尺寸固定、响应灵敏度低、表面修饰分子量过大等问题,提出一种全新的金纳米药物载体设计思路。本研究希望利用可变结构的DNA,设计出具有良好生物
细胞膜化学环境高度异质,性质多样,且功能基团丰富。细胞表面工程技术可以将有机、无机材料以共价或非共价方式锚定于细胞膜表面,以实现相应功能,例如:细胞保护、免疫隔离、细胞迁移控制以及细胞受体修饰等。  然而,由于细胞对外界环境的敏感程度高,使得细胞表面工程(CSE)在应用方面存在极大挑战。渗透压、pH、离子强度、温度等因素的变化,均会影响细胞的生物活性及细胞固有生物学功能。以静电相互作用结合的方法,
烟草是诱发食管癌的主要因素。其中,4-(甲基亚硝胺基)-1-(3-吡啶基)-1-丁酮(4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone,NNK)是香烟烟雾多种致癌物质中含量最高的一类烟草特异亚硝胺,它可以诱导动物肺癌,食管癌,口腔癌等癌症的发生。另外,近来有关HPV与食管癌相关性的研究相继被报道,但差异性很大。流行病学证据表明HPV能与烟草烟雾产生协同致
学位
爱泼斯坦-巴尔病毒(Epstein-Barr virus,EBV)感染与多种人类肿瘤发生密切相关。鼻咽癌(Nasopharyngeal carcinoma,NPC)主要发生在我国南方及东南亚等地区,发病率可高达25-50/10万。NPC高发区约有95%的病例为未分化型非角质化癌,EBV可在约98%的非角质化NPC病例中检测到。因此NPC是EBV相关肿瘤免疫治疗策略开发的理想模型。NPC中表达的EB
学位
背景:众多中枢神经系统疾病都伴随神经炎症。神经炎症引发和加剧的核心环节在于小胶质细胞的激活。激活的小胶质细胞释放多种神经炎性分子,造成炎性组织微环境,进而引起神经元结构和功能异常。我们前期研究结果显示在小胶质细胞激活过程中,其谷氨酰胺酶表达水平显著提高。静息态小胶质细胞过表达谷氨酰胺酶后可诱导小胶质细胞的激活,同时增加细胞外囊泡的释放。近期有研究表明,激活态小胶质细胞所释放的细胞外囊泡能够引起神经
目的:  糖尿病视网膜病变(Diabetic Retinopathy,DR)是一种糖尿病性微血管病变,是糖尿病中最常见、最重要的致盲病,其发病机制与高血糖诱导的氧化应激、多元醇途径、慢性炎症等有关。神经胶质成熟因子-beta(GMFB)是由脑组织提取得到的一种17kDa的酸性蛋白质,主要在中枢神经系统中星型胶质细胞和一些神经元表达。实验室前期研究发现,GMFB在糖尿病早期视网膜病变中起着重要作用。
神经干细胞是一类具有自我更新能力且能分化为神经元、星形胶质细胞以及少突胶质细胞的组织干细胞,在哺乳动物体内主要分布于大脑的室管膜下区及海马齿状回颗粒下区。大量研究表明,包括脑卒中损伤在内的中枢神经系统损伤能激活神经干细胞参与损伤的修复。然而当脑卒中发生后,不仅神经干细胞参与脑损伤的修复,而且血管内皮细胞、周细胞、胶质细胞等其他终末分化细胞也将共同参与修复。  为研究神经干细胞与神经血管单元对脑卒中
在世界范围内,癌症是引起人类死亡的主要原因之一。每年癌症死亡人数大约有820万人。其中非小细胞肺癌(Non-smallcelllungcancer,NSCLS)导致的死亡人数超过一百万,而肺腺癌(Lung adenocarcinoma,LUAD)是NSCLC中最常见的组织学类型。自2011年国际肺癌研究协会/美国胸科学会/欧洲呼吸学会(IASLC/ATS/ERS)引入新的组织学分类后,越来越多的研
学位
O6-烷基乌嘌呤-DNA烷基转移酶(AGT)是一种重要的DNA修复酶,AGT可将DNA鸟嘌呤O6位上的甲基、氯乙基和苄基等烷基基团转移至自身第145位半胱氨酸残基上,所以AGT在保护正常细胞DNA不受烷化剂损伤的同时,也能够修复抗癌烷化剂对肿瘤细胞DNA的损伤,进而导致抗肿瘤药物的耐药性。氯乙基亚硝基脲(CENUs)通过诱导DNA形成dG-dC股间交联使癌细胞凋亡从而发挥抗癌效果,常用于治疗脑瘤、