钾/锌离子电池电极材料的合成、电化学性能及机理研究

来源 :福建师范大学 | 被引量 : 0次 | 上传用户:fairboy2000
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
具有高能量密度的锂离子电池在电动汽车市场中占有绝对优势。但随着市场需求的急速膨胀,其在安全、成本、环保等方面的问题也日益显现。考虑到资源丰度、储能容量和安全性等因素,单价钾离子电池和多价锌离子电池被认为有希望补充与替代锂离子电池的新型二次离子电池体系。然而高性能和低成本电极材料的缺乏严重限制了它们的发展。所以探索合适的钾/锌离子电池电极材料是目前的首要任务。具有特殊二维层状结构的材料适合金属阳离子的可逆嵌入和脱出,表现出良好的钾/锌离子储存性能。基于此,本文提出了两种具有层状结构的WSe2和K0.5V2O5材料,研究了其分别作为钾/锌离子电池的负极和正极材料的可行性及其电化学性能和反应机理,并对材料结构与电化学性能之间的构效关系做出了合理解释。主要研究包括:(1)直接采用商业化WSe2作为钾离子电池负极材料,该材料不仅具有1772.8Ah/L的超高体积比容量,而且表现出较好的倍率性能(200 m A/g的电流密度下实现72 m Ah/g的比容量)和循环稳定性(100 m A/g的电流密度下充放电循环100次后容量保留83.14%)。此外,我们通过非原位XRD揭示了其本征转化反应机理,完全放电后形成K+-K2Se4电化学体系。和普鲁士蓝正极组装的钾离子全电池可以实现135.2 Wh/kg的能量密度。本工作论证了WSe2作为高体积比容量钾离子电池负极材料的潜能。(2)利用水热法制备K0.5V2O5二维层状材料,并作为锌离子电池正极进行电化学性能、反应动力学和反应机理的研究。该材料具有7.7(?)的超大层间距,每单位的K0.5V2O5最多容纳1.67个单位Zn2+的脱嵌,插层K+作为支柱起到稳定材料结构的作用。在充电到1.4 V时K+发生不可逆的脱出,所以通过调节电压范围可以实现对层间K+脱出行为的控制。在0.2-1.8 V的电压范围下,材料具有444.38 m Ah/g的高可逆比容量和355.5 Wh/kg的高能量密度。但由于K+支柱的破坏表现出相对较差的长循环性能(100 m A/g电流密度下经过200次循环容量剩余67.9%);在0.2-1.4 V下,得益于K+的支撑作用,材料保持稳定的层状结构,从而表现出和优秀的循环稳定性(100 m A/g电流密度下经过200次循环之后仍剩余最大比容量的82%)和359.3m Ah/g的高可逆比容量。此外,10-10-10-11 cm~2/s的较大离子扩散系数带给材料优秀的快速充电能力。该项工作报道了一种高比容量锌离子电池正极材料,并通过结构K+是否脱出的对比研究从原子尺度上解释了材料结构对电化学性能的作用机制。
其他文献
随着人们对便携设备、电动汽车和可再生能源需求的不断增加,高能量密度和长循环寿命的储能设备的开发引起了人们广泛的研究兴趣。锂硫(Li-S)电池因其高理论容量、原料硫的价格低廉以及环境友好等优点成为最具前景的新一代高比能二次电池系统之一。但是,在实际应用中,锂硫电池面临着硫及其固态放电产物电导率差、多硫化物的穿梭效应和充放电过程活性硫的体积变化等问题。本论文围绕上述问题,从硫正极材料的结构设计角度出发
过渡金属催化C-H键胺化可以便捷合成各种生物活性分子、药物分子或功能材料,受到有机化学家的广泛关注。众所周知,吲哚骨架广泛存在于天然化合物与生物活性分子中。在过去十几年里,越来越多的有机化学家致力于吲哚骨架的C-H键活化官能团化反应。本文从2-苯基吲哚及7-苯基吲哚出发,考察了过渡金属催化芳基吲哚邻位C(sp~2)-H胺化反应,发展了以NH-吲哚为导向基团,仲胺和对甲苯磺酰叠氮为氨基源进行的C(s
食品中的风险物质对人类的生产生活具有严重的影响,能够快速便捷的检测食品中的风险物质对人类的生活健康具有较大的影响。因此对于环境中的残留物质(盐酸克伦特罗、甲硝唑、敌草隆、亚硝酸盐等)的检测刻不容缓。基于传统基底的昂贵,预处理复杂等缺点,该文章使用了纸基SERS基底,将纸基与SERS的结合,不仅实现了基底基材的廉价、绿色无污染,还可实现纸基多次裁剪反复使用。(1)通过原位还原,将银纳米粒子嵌入并生长
超疏水表面指的是材料表面具有优异的疏水性能,水滴在材料表面的接触角大于150°。超疏水材料在防雾防结冰、防污自清洁、金属防腐蚀、抗菌材料、油-水分离等领域具有潜在的应用价值。表面具有较低的表面能和适宜的粗糙度是构建超疏水表面的条件。本文采用溶胶-凝胶法制备了单分散、稳定性良好的纯硅溶胶,并用改性剂十七氟癸基三甲氧基硅烷(FAS-17)对纯硅溶胶进行化学修饰,成功制备了氟化超疏水疏油硅溶胶。将环氧树
由于温度升高,各种非辐射弛豫过程加剧,稀土掺杂荧光材料通常表现为荧光热猝灭现象。然而,最近出现了一系列具有反常荧光热增强现象的上转换材料,这类材料引起了研究人员广泛的关注。虽然研究者们在热增强上转换荧光效应方面已经做了相当多的研究,但其背后的机制仍然存在争议。因此,研究者们致力于探究出一种合理的机制来解释稀土掺杂上转换材料中的反常荧光热增强效应。此外,反常荧光热增强现象可以为某些稀土掺杂上转换材料
福建是我国茶叶主产区,茶产业发展迅速,与种植其它农作物或果树相比,其经济效益更高,但寒冻害等气象灾害常造成茶叶生产的巨大损失,直接影响茶叶生产和农民收入,同时由于缺乏茶叶保险,茶农的损失无法得到损失补偿。因此,通过开展茶叶寒冻害指数保险产品设计研究,减少寒冻害风险对茶叶生产的负面影响,对拓展地方特色农业种类的农业气象指数保险具有重要意义。本文以福建省主要经济作物茶叶为研究对象,以县级行政单元为基本
为揭示河口潮汐湿地土壤碳矿化速率和途径对氮增强和海平面上升两大全球变化的响应,本研究以福建省闽江河口鳝鱼滩半咸水短叶茳芏(Cyperus malaccensis)沼泽湿地为研究对象,设置对照(CK)、施氮(+N)、淹水增强(+W)以及淹水增强和施氮交互(+W+N)4种处理,并于系统设置后240天(生长期)、420天(非生长期)和630天(生长期)测定土壤有机碳矿化速率、铁异化还原速率、硫酸盐还原速
生物炭应用于改良土壤并促进植物生长的一重要原因是生物炭中营养元素的释放。低分子量有机酸(Low Molecular Weight Organic Acids,LMWOAs)在环境中广泛存在。生物炭添加到土壤中,其营养元素的释放必然会受到LMWOAs的影响。然而,LMWOAs影响生物炭中营养元素释放的机制尚未明确。本研究选取竹屑、玉米秸秆和小麦秸秆三种生物质在不同热解温度(300-750°C)和限氧
弛豫铁电单晶材料,例如Pb(Mg1/3Nb2/3)-Pb Ti O3(PMN-PT),Pb(Zn1/3Nb2/3)-Pb Ti O3(PZN-PT)和Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-Pb Ti O3(PIN-PMN-PT)由于具有优异的压电、介电、机电性能使其在下一代压电换能器、传感器的应用方面具有巨大的潜力。近年来,高质量、大尺寸的PMN-PT和PIN-PMN
天然气作为一种清洁能源,在能源消费结构中的比重逐年提高,主要应用于发电厂和天然气汽车动力燃料。天然气的主要成分是甲烷,使用过程中未燃尽的低浓度甲烷直接排放会加剧温室效应。当前,催化燃烧技术是实现甲烷减排的有效途径,而以Al2O3为载体的负载型Pd催化剂在甲烷燃烧中最具应用前景。然而催化剂中的钯颗粒在反应过程中易于聚集和烧结,且在高温条件下小颗粒Pd O易分解为金属Pd而失活。因此,提高活性Pd O