高活性水分散纳米硫的可控制备及锂硫电池性能研究

来源 :天津大学 | 被引量 : 0次 | 上传用户:gennie_g
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
锂硫电池具有高的能量密度,且活性物质硫对环境友好、成本低廉,是极具发展潜力的下一代储能器件,但硫导电性差、充放电中间产物穿梭效应严重及体积膨胀等问题严重制约着锂硫电池的发展。非活性功能材料的物理阻隔及化学吸附作用会显著改善锂硫电池中的固有问题,但仍然存在着硫活性物质利用率及电池实际能量密度较低的问题。本文以高活性纳米硫为研究目标,制备具有良好水分散特性、高电化学活性的硫纳米颗粒,深入研究其在锂硫电池中的反应机制及应用潜力,通过结构设计优化及表面化学修饰,实现高能量密度锂硫电池的构建。以氧化石墨烯和含硫化合物为原料,通过一步水热法制备了具有三维多孔网络结构的石墨烯基碳硫复合材料,实现了硫活性物质在石墨烯片层上的均匀分布。以石墨烯为基元结构构筑的三维多孔网络,可以有效提高复合电极的导电性,其多孔结构可以实现对多硫化物的物理阻隔。通过对复合材料溶剂脱除机制的控制,制备了具有致密结构的高密度碳硫复合材料,该材料能有效缓解电池反应过程中的体积膨胀,改善锂硫电池的电化学性能。将含硫污染废气硫化氢与二氧化硫的归中反应转移到水中,发展了具有良好水分散性、尺寸可控的纳米硫颗粒的制备方法,是一种无表面活性剂和有机溶剂的绿色制备方法。所得水分散纳米硫颗粒应用于锂硫电池中显示出优异的本征电化学性能,且能在水相中与其他导电组分以任意比例混合制备锂硫电池电极材料。当与碳纳米管进行复合制备正极材料时,在0.5 A g-1的电流密度下,放电容量可以达到1673 m Ah g-1的理论容量,5.0 A g-1的电流密度下,放电容量仍然高达750m Ah g-1;当作为硫基功能化中间层结构时,能显著抑制多硫化物的穿梭效应,改善锂硫电池的循环稳定特性。基于水分散纳米硫的独特性质,以高导电碳纳米管构筑的三维网络结构为导电基底,通过引入功能化中间层结构,制备具有层次化结构设计的柔性锂硫电池正极材料,实现对多硫化物的物理阻隔与化学吸附,基于该材料的柔性锂硫电池器件展现出良好的循环稳定性和耐弯折性能。为进一步提高锂硫电池的实际能量密度,充分发挥三维高导电石墨烯的结构优势与水分散纳米硫颗粒的高活性特质,制备了硫含量高达88%的三维石墨烯/硫复合材料,并通过氮原子掺杂对非极性石墨烯表面的化学修饰,增强对多硫化物的化学吸附作用,改善锂硫电池的电化学性能。
其他文献
学者史密斯提出在西方存在“权威化遗产话语”(authorized heritage discourse,简称AHD),主导着认定和思考遗产的方式。它产生于19世纪末的欧洲,以英法两国的保护理论为基础发展而来。改革开放后,西方理论传入中国,中国遗产保护一定程度上受制于西方话语,导致本土话语未被充分挖掘。另外由于种种原因,本土人员在认识和应用西方理论时,出现理解偏差等问题。本研究的目标首先在于厘清AH
学位
超薄化是实现膜分离性能强化的重要策略之一。通过层层组装制备超薄膜,可实现膜厚度、组成和形貌的精细调控以提高分离性能,并利用较强层间相互作用实现高稳定性。本研究提出将利用层层组装实现膜超薄化和利用膜材料杂化克服渗透性选择性之间tradeoff效应两种策略结合,制备层层组装杂化膜,对膜的表面性质和主体性质进行协同调控,强化膜分离性能和稳定性,为渗透蒸发醇脱水膜的制备和应用提供理论和技术支持。主要研究结
学位
薄层复合膜是膜技术史上的一个重要突破。分别优化分离层和基膜使复合膜性能最优化是薄层复合膜的一大特色。较之于分离层研究,基膜研究在数量及深度上都有很大差距。本文以界面聚合制芳香聚酰胺薄层复合反渗透(RO)膜和刮涂法制气体分离复合膜作为薄层复合膜代表,研究如何通过改善基膜提高复合膜性能,同时深入探讨基膜对复合膜性能影响机制以完善相关理论体系。首先,开发了一种简洁有效的基膜表面孔结构重构方法,用于改善制
学位
目前,集成模块钢结构以其施工高效、质量精良、绿色环保等优越性逐渐成为工程界和学术界关注的热点,但其建设多局限于非抗震设防地区,对其抗震性能的研究还不够充分。针对这一现状,本文开展了集成模块钢结构波纹钢板剪力墙与新型节点抗震性能研究,主要研究工作与成果如下:(1)开展了足尺波纹钢板剪力墙拟静力试验。根据集成模块钢结构建造方式设计加载方案,完成开洞与不开洞2组共8个波纹钢板剪力墙足尺试件拟静力试验,试
学位
本文从幼儿情绪管理的对象、内容、构成要素、目的及其本质探讨了幼儿情绪管理的内涵,从幼儿情绪管理发展现状、幼儿情绪管理对幼儿发展的影响、幼儿园和家庭以及幼儿自身因素对其情绪管理的影响、幼儿情绪管理的特征及发展规律、对幼儿情绪管理的干预研究等五个方面梳理了幼儿情绪管理的研究现状,认为当前的研究大多集中在某个具体活动或载体对幼儿情绪管理发展的促进作用,缺少综合性、全面性、系统性的研究,未来的研究应当关注
期刊
数值方法已经成为解决科学研究和工程问题中的重要工具。数值方法不仅被广泛地应用于化工过程的模拟中,还可以用于其过程强化。本文提出了一种多目标变分方法,并对其在化工中的过程强化和过程仿真的应用进行了研究。多目标变分方法是一种从非平衡热力学的熵产极值原理发展而来的强化与仿真方法。不同于熵产极值原理将总熵产作为一个目标函数,多目标变分方法将熵产的传热、传质、反应和流动黏性耗散部分进行分解,并将各个部分作为
学位
单分散高分子及其复合材料微球的制备是当今微纳米材料研究的一个重要领域,尤其在制备尺寸均一、粒度可控、组分可调、球形度好的微球方面还存在巨大的挑战。因此根据聚合机理的不同,本论文分别设计了适用于高温固化和催化剂引发固化的微流控芯片用于单分散高分子微球的可控连续制备。本论文利用微流控液滴技术,在芯片内实现原料的精确配比、快速混合及预固化成形过程,成功制备了酚醛树脂(Formaldehyde Resin
学位
本文设计合成了三个以1-苯基-2-(9-蒽基)-乙烯(t-APE)为核心的蓝绿光发光材料。利用红外光谱、核磁共振谱和质谱对中间体和目标产物的结构进行了表征。对合成的化合物的光物理性能、电化学性质、热性质进行了测试表征,探讨了化合物结构对其影响。并研究了它们在有机电致发光器件(organic light-emitting diodes,OLEDs)中的应用。设计合成了不对称蓝绿光材料1-(9-(α)
学位
本课题首先通过代谢工程改造谷氨酸棒杆菌,并结合发酵工艺优化,实现了高浓度手性纯的D-(-)-2,3-丁二醇的生产;其次,以能够高效利用木糖的丁二酸生产菌株为评价菌株,考察并优化了其利用木质纤维素水解液生产丁二酸的能力,实现了丁二酸的高得率、高生产速率和高浓度生产;然后通过进化工程手段,获得了不依赖任何质粒能够高效利用木糖进行生长的谷氨酸棒杆菌进化菌株;最后,通过代谢工程改造提高了进化菌株在厌氧条件
学位
氢气是一种洁净可再生能源,符合可持续发展要求。基于氢气的燃料电池也为汽车提供了一种替代能源。含氧烃类化合物的水蒸气重整反应(SR)很适合为小型集成化的移动电池设备在线供氢。近年来,二甲醚(DME)由于其高能量密度,易储存运输和无毒等优势,成为了比传统甲醇更具优势的一种制氢原料。目前铜基催化体系是重整反应中最常见的催化剂。但其仍面临活性中心存在争议,反应机理尚不清楚等难题,限制了高效重整催化剂的设计
学位