川金丝猴(Rhinopithecus roxellana)不同等级单元成年个体取食与行为时间分配策略的研究

来源 :西北大学 | 被引量 : 0次 | 上传用户:aylwq
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
社会性动物种群内个体互动以寻求繁殖资源、食物资源和生存环境。研究表明,当个体之间互动需要权衡社会关系的成本和收益时,就会出现等级。等级关系深刻影响种群内个体或群体间资源分配,使得高低等级个体或群体对资源的利用被等级制度所支配,而资源在物种的稳定维持中具有重要意义。在灵长类动物中,个体或者群体间对食物资源和繁殖资源的竞争是非常普遍的,研究不同等级个体对资源的竞争,将有助于探究群居动物成群及稳定的机制。川金丝猴(Rhinopithecus roxellana)具有独特重层社会(Multi-Level Society)结构,其等级的存在会影响个体和群体对资源的竞争,而雌性作为群体重要的成员对于维系单元凝聚力和稳固单元地位具有重要意义。目前,两性中不同等级单元雄性的取食及其在维系单元稳定方面的策略已有阐述,而不同等级单元雌性采取哪种策略来应对资源竞争和维系单元稳定,仍属研究难点。针对这一问题,本研究在陕西省汉中市佛坪县观音山国家自然保护区以繁殖群内所有成年雄性以及成年雌性为研究对象,采用焦点动物取样法和全事件记录法对目标个体进行全天的跟踪观察,详细记录个体的取食情况和行为时间活动分配情况,对取食食物进行详细量化和分析。研究结果发现:1.高等级单元成年雌性取食时间显著低于低等级单元成年雌性,且不同等级单元成年雌性个体的取食量和取食能量的摄入无显著性区别。2.高等级单元成年雌性个体花费较少时间取食,其社交行为时间显著高于低等级单元成年雌性。在社交行为时间分配上,高等级单元雌性与单元内未成年个体互动时间显著高于低等级单元雌性,与单元内其他成年雌性个体互动时间显著高于低等级单元雌性,与单元主雄互动时间却显著低于低等级单元雌性。本研究的结果说明:不同等级单元成年雌性个体其取食策略和行为时间分配策略与其单元主雄并不相同,高低等级单元雌性取食策略相似,无显著区别,高等级雌性并不会因为所属单元等级高而获得更高的食物资源收益;而在行为时间分配策略中,高等级单元雌性主动花费较多时间与同单元未成年个体和单元内其他成年雌性个体互动,花费最少的时间与单元主雄互动;而低等级单元雌性主动花费较多时间与单元主雄互动,高低等级单元成年雌性个体以不同的行为策略来增强单元凝聚力。
其他文献
近些年来,抗生素类药物在全世界范围内的生产量和使用量越来越大,并且在饮用水和污水处理厂的排放水中常能检测到抗生素的存在。由于抗生素的密集使用和持续释放,世界各地的水体和土壤中都发现了高浓度且持续的抗生素。这种严重污染会破坏人类健康并加剧生物体耐药性相关的风险。此外,抗生素及其代谢物对生物和人体具有潜在和持久的危害,这使得抗生素在环境中的残留问题突出。红霉素(ERY)是一种常见的大环内酯类抗生素,在
叶绿体分子伴侣CPN60(Chaperonin 60)属于分子伴侣家族,分子伴侣可以帮助多种底物进行折叠与组装,它主要分为两种类型,一型分子伴侣和二型分子伴侣,CPN60属于一型分子伴侣。在拟南芥中,组成CPN60结构的蛋白亚基有六种CPN60α1、CPN60α2、CPN60β1、CPN60β2、CPN60β3、CPN60β4;以及三种共伴侣蛋白CPN10-1、CPN10-2与CPN20。目前虽然
复杂边界为细菌、真菌等微生物提供了固有的生存环境,同时微生物的生命运动也对微环境产生影响。例如细菌通过鞭毛拍打获得自身整体平动与转动,因而在软物质领域中被当作一类典型自驱动的主动粒子,它显著区别于经典的热运动主导的常规胶体被动粒子。本论文以自主运动的细菌为研究对象,探究复杂边界条件下主、被动粒子的相互作用。这为复杂环境下细菌行为的调控、细菌运动机制的探索以及细菌的实际应用提供了方案和思路。首先,探
斑马鱼具有光学透明性、遗传可操作性、与人类基因同源性等特点,因此非常适合用于分子基因检测和药物筛选。斑马鱼的运动能力通常可以用来反映其大脑功能紊乱、运动功能受损和对环境变化的敏感性等。研究者发现,人体中Lipin1蛋白的表达缺失会使得成人出现肌无力症状且伴随着周围神经的病变,而斑马鱼可以用Lipin1的缺失来模拟相应的神经肌肉表现。目前,在斑马鱼模型的运动表现研究中,研究人员常采用触碰观察法。而在
纳米通道单分子检测技术具有方法简单、无需标签、实时监测的优点,在生物、化学领域受到广泛关注。与生物纳米通道相比,固态纳米通道孔径尺寸和形状可调,在各种条件(p H值、温度、浓度等)下均具有出色的热稳定性和化学稳定性,因此,广泛应用于核酸、蛋白质和单细胞的检测。但是,将固态纳米通道应用于单分子检测技术时,通道本身的离子电流整流(ICR)因素是不可忽视的。ICR主要研究通道内部的离子输送,通过改变外界
一系列被称为分裂体的蛋白质复合物介导着原核细胞的分裂。这种分裂体的组装是由微管蛋白同源物FtsZ在分裂位点聚合成环状结构,即收缩环(Z环)开始的。FtsZ作为主要的细胞骨架蛋白,在细胞分裂中起到了关键的作用。FtsZ原丝纤维由GTP的结合和水解调节聚合和解聚循环,通过水解GTP,将化学能转变成机械能再转变成向内的收缩力,缩小自身直径,拉动隔膜内陷,直到细胞分裂结束,形成新的两个细胞。在大肠杆菌中,
巴山松(Pinus henryi Mast.)是我国特有的松属植物,分布于大巴山脉、巫山支脉、武陵山脉,是我国温性针叶林的一个重要树种。分别与油松(Pinus tabuliformis Carr.)地理分布区的南缘、马尾松(Pinus massoniana Lamb.)地理分布区的北缘相重叠。自命名以来,巴山松的系统分类位置一直存在争议,由于长期以来分类系统的混乱,巴山松常被视为其他物种的变种被滥
次溴酸(HOBr)作为体内非常重要的活性氧(ROS)之一,参与生命体中许多重要的生理及病理过程。然而,生物体内HOBr含量的异常则会引发与炎症相关的各种疾病。因此,动态监测生物体系中HOBr的产生对于生物学研究和临床诊断具有重要意义。荧光探针具有操作简单、便捷、灵敏度高、无创成像等优点,是监测生物体系中ROS强大的化学工具。借助荧光成像技术,荧光探针可实现活性氧在生物体内的原位、动态、可视化的监测
光合作用是光合生物通过吸收光能将H2O和CO2转化成有机物并释放氧气的过程,是地球上生物赖以生存的基础,也是地球上碳氧循环保持平衡的重要机制。由肽基脯氨酸顺反异构酶(peptidyl-prolyl cis-trans isomerase,PPIase)介导的蛋白折叠变构是生命活动的必需过程,在植物的生长发育、抗逆境以及植物的光合作用等方面起到重要作用。光合系统复合体的生物合成同样需要PPIase蛋
具有微纳尺寸的游泳生物在界面的运动行为与很多自然现象和生命健康有着紧密联系。细菌利用鞭毛鞭打周围流体,获得推力从而实现运动与迁移,被当做典型的微游泳体,其运动的流体力学特性是当前低雷诺数下微生物游动的重要研究方向。然而实际情况下,由于布朗热运动、run-tumble过程、细菌自游动、流场剪切,及界面复杂性等因素,人们对细菌的运动仍有许多尚未理解的现象与物理机理。源于细菌总是生活在有界空间内,如管道