圆筒件拉深成形摩擦机理及液压脉动润滑工艺研究

来源 :燕山大学 | 被引量 : 0次 | 上传用户:tonnyliu2042
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
新时代背景下,国家的战略发展规划对制造业的智能化水平、节能减排目标都提出了新的要求,板材拉深成形工艺遇到了新的挑战和发展机遇,需要在满足“成形成性”的基础上探索工艺优化方案。摩擦是影响板材拉深成形工艺成形性能和成形质量的关键因素,在成形过程中合理地利用有益摩擦、抑制有害摩擦,将对工艺的成败和效果起到至关重要的作用。板料与模具之间的微观接触状态和动态摩擦条件,是成形过程进行工艺润滑的决定性因素,若能建立起微观接触摩擦与宏观工艺参数的联系,将有助于对板材拉深成形中摩擦与润滑机理的全面认识,也能为探索符合国家战略需求的板材成形新工艺提供理论借鉴与参考。本文围绕圆筒件拉深成形工艺中的摩擦与润滑问题,重点开展了以下工作:(1)研究了摩擦对圆筒件拉深成形过程中的成形力的影响。建立了圆筒件拉深工艺的近似解析模型,利用能量法基本公式推导了拉深成形力的解析表达式;通过对拉深成形力中构成元素的定量分析,研究了如何控制不同接触区域的摩擦力才能更有效地降低拉深成形力以及提高板材的成形性能。(2)研究了圆筒件拉深成形过程中的微观接触和摩擦机理。分析了在不同载荷、应变、材料和表面形貌等参数条件下,板材与模具的微观接触问题和摩擦产生机理;并结合工程实践中的典型润滑工艺,分析了各种润滑状态的形成原理。(3)研究了拉深成形振动减摩机理,提出了液压脉动润滑新工艺。设计了摩擦实验,分析了高、低频振动对圆筒件拉深成形中摩擦系数的影响;推导了振动参数与摩擦系数下降比例之间的量化关系及振动减摩的一般性规律;基于振动减摩机理,提出了液压脉动润滑新工艺,详细阐述了工艺原理。(4)研发了基于接触和润滑状态的动态摩擦系数有限元模型。利用ABAQUS用户子程序模块,将微观接触与摩擦、混合润滑、液压脉动润滑等理论模型,通过编写FORTRAN程序,引入到有限元数值模拟中;使用所开发的程序模块,对圆筒件拉深成形进行了模拟仿真,实现了动态摩擦系数、润滑流体膜平均厚度、实际接触面积比例等变量的可视化。(5)开展了圆筒件液压脉动润滑拉深成形工艺实验。基于数值模拟结果,设计了拉深成形模具、润滑油源及其液压控制系统等装置。分别选取了BUSD、DC04和SS304等3种材质的板材,对不同规格的坯料、在不同的工艺参数和润滑条件下,开展了一系列圆筒件拉深成形实验,对实验数据、理论模型的计算数据、数值模拟结果数据进行了对比验证。结果表明,液压脉动润滑工艺有效地抑制了摩擦阻力,提升了板料的拉深成形极限,提高了成形工件的壁厚均匀性和表面质量;另外,通过数据的对比验证,证明了理论模型和数值模拟方法的科学性与准确性。
其他文献
盐胁迫影响了植物种子萌发、生长和发育,理解植物如何响应盐胁迫的生理适应机制对于提高农作物和环境修复植物在盐生环境下的产量与生长都具有重要意义。种子萌发是植物适应盐胁迫的第一步,决定了后面的生长与发育。但是,有关不同植物物种响应和适应不同盐胁迫环境的差异性研究相对较少。本文以生长在不同盐胁迫环境下的姐妹物种胡杨(Populus euphratica Oliver)和灰杨(P.pruinosa Sch
学位
原子核的电磁激发是当前原子核物理、粒子物理和天体物理领域最重要的热点问题之一。原子核电磁激发的研究可以提供原子核中有效核力的重要信息,如核力的自旋性质、核物质状态方程等,同时也可以用于提取原子核中子皮厚度、核物质不可压缩系数和对称能系数等重要物理量。此外,原子核电磁激发还有助于研究中微子-原子核中性流散射过程、快中子俘获过程(r-过程)中的中子俘获截面、高能宇宙射线光致蜕变等与粒子物理和天体物理领
学位
钨具有高熔点、高溅射阈值、高热导率和低氢同位素滞留等优点被认为是未来聚变堆中理想的第一壁材料。然而,钨本身也存在一些缺陷,例如机械加工性差、韧脆转变温度较高、低温脆性、辐照硬化和脆化等。这些缺陷将限制钨在未来聚变堆中的应用。近些年研究发现,向钨基体中添加少量的热稳定的碳化物(Ti C,ZrC和TaC)、氧化物(La2O3、Y2O3、ZrO3和Lu2O3),以及合金化元素(Ti、Ta、Zr和Re)可
学位
带电离子与固体的相互作用因在基础科研领域及实际应用领域都扮演了重要角色而被广泛关注。带电离子与固体的相互作用涉及材料改性、纳米结构制备、核医学、材料分析技术、天体物理等领域。电荷交换是伴随离子与固体表面碰撞过程中发生的一种常见现象。其在低能离子散射、二次离子质谱、强流负离子源、空间中性粒子探测、纳米孔制造和表面催化等应用中起着至关重要的作用。研究离子-表面散射的电荷交换有助于更全面、更深刻地认识电
学位
近年来,随着我国经济的迅速发展,对能源的需求与日俱增,传统能源的快速消耗导致环境问题愈发严重,为此,我国提出了发展高效、清洁新型裂变核能利用系统的发展规划,以缓解能源短缺和环境恶化等问题。新型裂变核能利用系统的设计与建设需要完备、精准的裂变核数据。然而,目前核数据库中有关中子诱发锕系核裂变的核数据仍缺失较多,制约了新型核能系统的发展。因此,有必要开展中子诱发锕系核素裂变理论及核数据计算方法、裂变核
学位
足式机器人与液压驱动的结合,使机器人具备了大负重和快速响应能力,在军民领域拥有巨大的应用潜力。液压驱动系统是足式机器人重要的子系统之一,负责按需求驱动机器人各关节运动,以实现机器人的各种步态运动,包含液压油源(产生高压液压油)和液压驱动单元(驱动机器人关节运动)。液压驱动系统若不能完全满足机器人各种步态的出力和速度需求,其将严重制约机器人的运动能力。因此,液压驱动系统性能是机器人性能优劣的决定性因
学位
当前原子核物理的研究正在沿着高能量(研究核物质性质和相图)、高同位旋(研究不稳定原子核)、以及高电荷和质量极限(研究超重核)三个方向发展。α衰变作为重核和超重核的主要衰变模式之一,在探索不稳定原子核结构、鉴别新合成重核和超重核身份信息、以及寻找重核内的α结团结构方面具有重要的研究意义,长期以来一直是原子核物理的研究热点。提供高精度的α衰变半衰期理论结果用以探索不稳定原子核结构、预言超重核稳定岛中心
学位
在孤岛微电网中,借助信息技术实现微电网中终端互联,构建电力信息物理融合系统是重要的发展方向。其中,通信数据的应用提升了微电网系统的可观与可控性,也将有利于完成微电网运行调控和能量管控任务。但随着信息技术与物理系统的不断融合,在微电网中应用信息技术的同时,其也给物理电网带来了待解决的新难题。其中,突出体现在受到通信拥塞、通信扰动和传输中断等通信不确定问题影响下,孤岛微电网运行调控和能量管控面临如下挑
学位
中子源与中子科学技术的发展极大增强了人类探索微观世界的能力。目前中子谱仪依旧采用基于~3He的丝结构中子探测器,探测器计数率低于10~4 Hz/mm~2,而且价格昂贵,限制了中子科学技术的发展。涂硼GEM(Gas Electron Multiplier)中子探测器具有计数率高、空间时间分辨好等优势,被认为是替代~3He丝结构探测器的发展方向。然而目前涂硼GEM中子探测器均工作在流气模式下,自身稳定
学位
研究背景泡型棘球蚴病(Alveolar echinococcosis,AE)是多房棘球绦虫幼虫或多房棘球蚴引起的一种危害严重的人兽共患寄生虫疾病。多房棘球蚴好寄居于人或啮齿动物等中间宿主的肝脏(约占97%以上),呈类肿瘤样侵袭性增殖对寄居肝脏造成持续损害,以进行性肝纤维化为主,或转变为肝硬化,因此又常被称为“虫癌”。阿苯达唑(Albendazole,ABZ)是当前AE临床治疗的首选药物,能限制多房
学位