论文部分内容阅读
微波介质材料普遍应用于军事、航空航天设备以及医学器件等各个高端前沿领域,其在军事技术上的优势表现得更加显著,尤其是在电子对抗技术领域的巨大需求,也更加促进微波介质材料技术研究的进步和发展。电磁参数是表征材料介电性能的重要依据,因而精确地测量出所需微波材料的电磁特性参数就显得尤为重要。在本文中,我们分析了当前介电材料测试方法在国内外的发展,列举了不同的介质参数测试原理,基于各种测试方法自身的优缺点以及本系统的测试要求,最终选择圆柱谐振腔微扰法来进行材料介电常数的测试,并设计了一个能工作在1~6GHz的0n0TM模式的圆柱谐振腔,搭建了一套能实现常温~800℃的复介电常数变温测试系统,在测试过程中,发现样品、腔体以及样品导向杆和刚玉管之间不能达到理想的完全贴合,中间的空气缝隙会影响到测试结果的准确性,因此根据圆坐标系中的波动方程同时结合场边界条件推导出多层介质加载样品的特征方程,并使用MATLAB编写了相应的算法,对加载样品和测试夹具之间的缝隙进行修正,从而保证了测试结果的准确性。使用USB总线数据采集卡,编写相应的程控代码对气动装置开关进行控制,实现了测试系统的自动控制。当样品被加热到所需温度后,快速移动装置会将样品迅速送到样品测试区域进行测量,为了保证测试时样品温度的稳定性,确保所需温度下样品测试的精确度,就要求当样品被送至谐振腔后矢量网络分析仪(以下简称矢网)必须在几秒钟内快速测得样品的谐振频率和品质因数,即系统能实现样品的快速实时测试。因此本文软件中矢网控制部分加入了单次触发矢网的控制程序,外部硬件部分通过感应开关以及触发分压电路连接矢网的触发接口,当样品被送至谐振腔内的同时,光电传感器感应到此信号,然后通过触发分压电路使矢网实时接收到相应的触发信号并开始测量,以此实现对矢网的单次触发,从而达到对样品快速测试的目的,最后完成整个变温测试系统的介电性能快速自动测试。利用本文所搭建的测试系统完成了对石英样品的高温复介电常数测试,根据测试误差理论对相应的测试结果进行分析,并找出相应的误差来源,同时也给出了介电常数和损耗角正切的误差公式。本系统的最终测试指标:测试温度:常温~800℃测试频率:1~6GHz测试范围:介电常数损耗角正切测试误差:室温:高温