分扭式直升机齿轮传动系统动态特性与载荷均衡性控制研究

来源 :重庆大学 | 被引量 : 0次 | 上传用户:miyinghua
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
直升机广泛应用于军事和民生领域,在国民生计中发挥着极为重要的作用,其中传动系统、旋翼系统和发动机称为直升机三大关键部件,其中直升机传动系统中包含各类齿轮传动,传动结构复杂多变,传动性能的优劣决定直升机的飞行寿命、安全性能以及可靠性性能等。直升机传动系统按照其旋翼的结构形式可分为单旋翼结构和双旋翼结构,共轴双旋翼结构相比于单旋翼有其独特的优势,性能比之单旋翼结构更优,但是其模型比之单旋翼更加复杂,动力学问题也更加突出。分扭传动系统作为直升机传动系统中代替行星齿轮传动进而实现功率分流的一种新型结构,在相同条件下,比行星齿轮传动具有更大的传动比,更高的功率密度,但其分扭传动的特点容易产生载荷不均衡问题。共轴双旋翼结构与分扭式传动系统的耦合,增加了传动系统的复杂性,使得其动力学耦合因素更多、特性更加复杂。本文以分扭式共轴双旋翼直升机传动系统为研究对象,建立传动系统的多柔体系统动力学模型,研究了典型工况下传动系统的动力学特性,研究了系统载荷均衡性问题。主要研究内容如下:(1)根据子结构模态综合法的思想,首先将传动系统按照其功能特点分为不同的子结构模型,其次由超单元缩聚理论,并结合传动系统的实际参数,将各齿轮及轴系进行超单元缩聚,然后结合多柔体动力学建模理论,将各个子结构通过力矩传递关系进行耦合,最终建立了传动系统动力学模型。(2)在动力学模型的基础上全面研究了典型工况下传动系统的动态特性,包括齿轮副啮合特性、各轴系振动特性和应力特性,研究发现分扭传动系统出现了严重的载荷不均衡问题,深入剖析了分扭传动载荷不均衡产生的原因。(3)针对分扭传动均载问题进行了载荷均衡性优化设计,在优化其均载特性的同时保持其它的传动性能稳定,最终解决了分扭传动载荷不均衡问题,大幅提升了系统载荷均衡性能,同时提升了其传动性能。本文研究结果可为分扭式共轴双旋翼直升机动力学设计提供理论依据和工程指导。
其他文献
目前我国高端装备关键传动装置仍然不得不从国外进口,存在着关键技术受制于人的巨大风险,使用国产产品又使装备性能大打折扣,因此高可靠精密减速器的研究已成为社会发展迫切需要解决的关键瓶颈技术问题,对打破技术封锁和垄断,为促进技术进步具有重要科学意义和工程实用价值。本文以NN型少齿差行星减速器为研究对象,经过齿廓设计与优化,结合变形协调设计方法,建立了刚性和刚—柔复合传动模型,利用多体动力学分析软件对比分
学位
点阵结构以其轻质高强、能量吸收等的特性,在工程领域获得了广泛应用。但不同点阵结构之间也有着较大性能差异,为匹配各种不同的工况,有必要进一步对现有点阵结构进行改造与性能优化。相对密度和拓扑结构是影响点阵结构性能的主要因素。研发新的点阵构型、构建点阵结构相对密度模型对当前工程领域有着重要意义。为此,本文以轻质金属点阵结构为研究对象,以获得不同工况下最适配的点阵结构设计为目的,提出了一种通过控制点阵单胞
学位
汽车尤其是商用车及工程车辆经常在复杂路况以及工地等恶劣路况中行驶,这会导致乘坐人员尤其是驾驶员长期处于低频大振幅的恶劣振动环境。座椅悬架作为路面激励到驾驶员的振动路径的最后环节,其减振性能至关重要,直接影响了驾驶人员的舒适性与安全性。磁流变减振器作为半主动智能器件可以有效改善座椅振动情况,但成本高、质量大的弊端限制了其应用。针对现在汽车座椅悬架减振器的性能设计需求和以上磁流变减振器的设计弊端,以密
学位
均匀金属微滴喷射增材制造技术是一种以金属微滴作为基本制造单元的三维实体离散堆积快速成形技术,具有材料利用率高、适应性强、结构可设计性强等优点,在直接快速制造微小金属构件、功能器件和异质部件方面具有独特优势,被认为是一种极具前景的微小金属结构增材制造技术。然而金属微滴沉积制造是一个典型的三维非线性瞬态传热过程,涉及到高焓金属液滴的凝固过程和复杂的热行为,如界面重熔、传热传质和固液界面生长。该过程通常
学位
我国的中小学教育长期处于分科学习模式,使学生的知识结构零散孤立,学科之间缺乏有机的联系、整合,跨学科学习方式亟须关注。本研究针对“跨学科学习”概念的内涵展开讨论,通过跨学科核心课程观的架构以及对综合性与探究性一体化的深度学习的架构,进而研发出基于综合主题的特殊课程形态。此外,还分析了跨学科学习的三个特征,即综合性、开放性、实践性,并提出实施跨学科学习的三个路径。
期刊
齿轮是动力传动系统的核心基础件,其性能优劣很大程度上影响整机装备的性能与可靠性。齿轮接触疲劳是典型的齿轮失效方式之一,其失效形式与机理相比其他失效方式显著复杂,严重制约着齿轮装备的寿命与可靠性,成为限制高端重载装备技术发展的瓶颈之一。表面完整性是影响齿轮接触疲劳性能的重要参数集合,但诸如表面形貌、残余应力、硬度梯度等参数与齿轮接触疲劳性能的关联规律依旧不明,抗疲劳设计与制造严重依赖于经验,显著制约
学位
机械振动无线传感器网络节点通常采用电池供电,且因高采样频率、高采样精度的性能需求存在着高能耗的弊端,在监测应用中需频繁更换电池,大大降低了监测效率,因此很有必要对节点进行低功耗设计。节点的状态主要可分为采集、传输以及空闲三种,其中传输状态在单位时间内的能耗最高,在传输大量振动数据时的能量消耗更为显著,使得现有机械振动无线传感器网络节点有效工作时间大大缩短,论文针对节点数据传输能耗开展研究,以延长节
学位
斜齿轮传动具有平稳性好、传动效率高、噪音小等优点,因此广泛应用于机械传动系统中。齿轮传动长期服役在高速、重载工况下,周期性疲劳、冲击易导致齿轮表面损伤,如齿面点蚀、剥落等。齿轮表面损伤将降低齿轮的啮合刚度进而影响齿轮的传动精度和平稳性。目前对于斜齿轮时变啮合刚度的理论计算方法较少,且存在计算模型极度简化、计算结果不精准、多齿啮合下基体刚度重复计算、赫兹接触刚度计算未考虑时变载荷因素、仿真分析忽略连
学位
机械振动无线传感器网络作为一种自组织、部署方便、动态性强的分布式传感网络,正逐步得到应用,特别是在密闭、旋转环境下机械振动监测方面极具应用潜力。现阶段采用的电池供电方式存在电池更换困难或无法更换的问题,严重制约了机械振动无线传感器网络的应用。有效利用机械测试环境广泛分布的振动能实现节点自供能,对解决机械振动无线传感器网络的能源供应问题具有重要意义。目前能量收集装置功率低,难以满足机械振动无线传感器
学位
多视角三维重建技术是逆向工程的核心技术之一,具有重要的研究意义和工程应用价值。而面向狭窄场景的高精度多视角三维重建对于口腔诊断、义齿设计以及机械结构测量等工作具有至关重要的作用。常见的多视角三维重建技术主要有点云获取、点云滤波、点云配准和点云网格化等,其中点云配准算法的性能将直接影响到重建结果的可靠性与准确性。为此,本文研究了适合狭窄场景点云的获取与预处理方法、成对点云配准方法、多视角点云配准方法
学位