新型可拉伸自愈合离子导电凝胶的制备、性能与应用研究

来源 :北京化工大学 | 被引量 : 0次 | 上传用户:xtb0909
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
可拉伸导体因其能够在大形变下保持稳定的机电性能,并且可与各种三维不规则表面实现无缝衔接而备受关注。但是,目前报道的可拉伸导体的研究中大多制备工艺复杂且成本较高。因此开发一种通过简单、快速且成本低的方法制备可拉伸导体仍是一项极具挑战性的工作。本文基于硫辛酸的热引发开环聚合,通过“一锅法”制备了两种可拉伸离子凝胶,并探究了两种离子凝胶的结构与性能。主要工作如下:(1)分别以丙烯酸和衣康酸为硫辛酸聚合过程中的自由基淬灭剂制备了侧链含大量羧基的线型共价聚合物,分别以甜菜碱和氯化胆碱作为低共熔溶剂中的氢键受体,与聚合物(氢键供体)制备了新型离子凝胶,同时,通过铝离子与羧基的配位作用对离子凝胶进行化学交联。并分别利用红外光谱、核磁共振氢谱和拉曼光谱对两种离子凝胶的结构进行表征。(2)以硫辛酸、丙烯酸以及甜菜碱制备的离子凝胶具有良好的耐低温性能和较高的热稳定性;在可见光波长范围内最大透光率可达87.3%;拉伸强度最高可达330 k Pa、断裂伸长率高达908%;离子电导率高达2.31×10-3 S·m-1;其电阻对应变变化有较好的响应性,并通过实验证明了其作为电阻式应变传感器的可行性。(3)以硫辛酸、衣康酸以及氯化胆碱制备的离子凝胶由于存在更多的氢键,在高温下具有更高的热稳定性,在最快失重速率时的温度高达284°C;更高的拉伸强度;然而过多的氢键同样也会给电导率带来负面影响。(4)聚(硫辛酸-丙烯酸)-甜菜碱和聚(硫辛酸-衣康酸)-氯化胆碱两种离子凝胶中存在着大量的动态键(氢键、Carboxyl-Al3+配位键、二硫键)赋予了离子凝胶良好的室温自愈合性能,在室温下16 h内自愈合效率均可达90%;同时,离子凝胶分子主链中的二硫键赋予了材料良好的重复加工性能。
其他文献
作为一种广泛应用于临床诊断和生物医学检测的有效手段,生物芯片由于其小型化、高自动化、高通量以及对各种生物活性分子或物质如DNA、蛋白质、细胞、组织的广泛适用性等优点,已经逐步发展成为生物医学、化学和材料科学等多个学科交叉的热点研究领域。传统的二维(2D)芯片通常建立在玻片、硅片等平面基底上,面临着探针负载量低、灵敏度不高等缺点。与无机基材相比,聚合物基材具有加工性能良好、功能化修饰手段多样、质轻等
学位
共价有机框架(COF)材料因其低密度,高表面积以及有序的孔道结构等特点在光催化等领域具有广泛的应用前景。但仍存在光激发电荷再结合效率高等问题。为了提高光催化效果,选择合适的策略对COF进行修饰改进是必要的。由于构建COF单体具有多样性的特点,因此根据功能要求选择合适的单体,或对其改性实现对结构的调控对提高光催化效果具有一定的可行性。本论文用三嗪和萘酰亚胺两种单体通过溶剂热的方法成功构建共价有机框架
学位
几十年来,水中离子污染物由于对生物的毒性和致癌作用,已引起全球范围广泛关注。离子型污染物在工业用水和饮用水中广泛存在,因此对离子污染物的去除一直是水处理领域研究的重点。当前对离子污染物的去除方法仍存在一定瓶颈与限制,例如成本高、处理工艺复杂、对环境产生二次污染风险等。吸附法作为常用的水中离子污染物去除方法,具有低成本、高效、无副产物、环境友好等优势,而以吸附膜作为吸附介质,在静态吸附与动态吸附中均
学位
近红外(NIR)半导体聚合物因其优异的光物理性能被广泛应用在有机太阳能电池、生物成像及光诊疗研究领域中,开发新型具有近红外吸收窗口的半导体聚合物,并研究其构效关系具有重要意义。在众多调控材料吸收窗口的设计策略中,最有效的策略是利用推拉电子效应增强分子内电荷转移(ICT)以缩小带隙使得材料吸收红移。基于此,我们通过采用小分子受体高分子化、侧链异构化、共聚单元平面性调控三种策略,设计合成了三类具有近红
学位
本论文采用了共沉淀-水热-溶剂热-溶剂热(Coprecipitation Hydrothermal Solvothermal Solvothermal,简称CHSS)法分别制备了银/金纳米粒子掺杂的Ag-Na YF4:Yb3+/Er3+@Na YF4:Nd3+@Na Gd F4和Au-Na YF4:Yb3+/Er3+@Na YF4:Nd3+@Na Gd F4上转换纳米材料,在弄清银/金纳米粒子掺杂
学位
研究表明,APE1酶作为一种细胞内多功能酶,在肿瘤细胞中存在异常表达,其水平通常会升高,因此,APE1作为一种重要的肿瘤标志物,对于肿瘤的筛查与治疗至关重要。迄今为止,在已发表的研究中有许多检测方法,比如SERS传感检测、酶联免疫吸附测定,但是对APE1的检测手段还不够丰富,已经实现的检测范围及检测限远远达不到更理想的要求,因此,对APE1的进一步探索研究至关重要。DNA walker是一种DNA
学位
随着油气开采难度的提高,油田用纤维增强树脂基复合材料长期暴露于剧烈温度变化、盐雾、高含水、高矿化度等严苛环境下,而目前对于石油化工领域特殊环境下复合材料性能劣化机制并不明确。基于此,本文以石油化工领域常用的玻璃纤维增强环氧树脂复合材料为研究对象,通过室内老化实验模拟复合材料在油气开采、输送过程中服役环境,研究复合材料在高低温循环、不同溶液介质条件下的老化行为;材料制备过程中在环氧树脂中分别加入多壁
学位
可降解聚合物聚己二酸对苯二甲酸丁二醇酯(PBAT)的推广应用对环境保护和社会发展具有重要意义,同时随着社会的进步人们对PBAT的成本、降解性、机械性能和多功能性等提出了更高的要求,因此对PBAT复合材料的研究是至关重要的。本课题以降低PBAT复合材料的生产成本和提高综合性能为目标,建立并解释了相应的方案,为PBAT的开发和发展提供了技术和理论支撑。主要研究成果及创新性总结如下:1、针对淀粉分子链间
学位
橡胶由于自身独特的粘弹性成为轮胎行业中不可或缺的材料。然而,纯橡胶难以满足其实际应用需求,常常需要加入填料对橡胶进行补强。通过将白炭黑(SiO2)与溶聚丁苯橡胶(SSBR)共混制备SSBR复合材料及应用于轮胎胎面胶,能极大改善轮胎的抗湿滑和滚动阻力性能。但随着对轮胎高耐久、高耐磨、高导热等综合性能要求的不断提高,单一添加SiO2制备的SSBR复合材料难以满足这诸多综合性能需求。石墨烯(GE)具有大
学位
电磁波辐射污染严重性和应用环境的复杂性,使得将多种功能集成到一种材料中成为了非常迫切的一个目标。多功能型吸波材料对新一代无线电技术以及小型电子设备具有极大的吸引力。传统吸波材料由于制备工艺复杂、填料引起透明性差等问题限制了其应用。本研究为了实现一种高透明的多功能高效微波吸收材料,从电磁波损耗机制及吸收理论出发,考虑到:1、柔性凝胶在光学透明度、拉伸性能、导电性能(良好的传导损耗)均具有较好的表现;
学位