微缺陷诱导的半导体激光器腔面热效应研究

来源 :太原理工大学 | 被引量 : 0次 | 上传用户:jianzhang5555
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在激光器的生产加工过程中,会不可避免给腔面带来微缺陷,如划痕,裂纹以及凹槽等。这些微缺陷的存在,会诱导激光在腔面产生调制作用,激光会在缺陷处重新分布,在缺陷处反射叠加增强,形成强烈的聚焦,使得腔面温度在缺陷处急剧增强,对腔面造成熔化,气化等现象,最终对材料造成激光烧蚀现象。激光器的持续工作,腔面气化造成的损伤会进一步扩展。本文通过理论推导,数值模拟和实验仿真对微缺陷诱导的砷化镓腔面的损伤扩展进行了研究。本文以热传导原理为基础,做了以下相关研究:以热传导模型为基础建立了砷化镓腔面的温度场模型。通过对激光与砷化镓材料的相互作用的物理机理进行研究和总结,建立了激光辐照砷化镓材料的温度场模型;以移动网格技术为基础对砷化镓腔面微缺陷诱导的损伤扩展进行了相关研究。激光器在长时间辐照带有微缺陷的砷化镓腔面后,腔面的温度会在缺陷处急剧升高,砷化镓腔面产生熔化和气化现象,导致初始缺陷进一步扩展,形成损伤扩展。通过相变原理对温度变化过程中产生的熔化气化现象进行监控,实现对损伤扩展的监控和研究。为激光对砷化镓腔面烧蚀的仿真建模和研究做出准备。为分析不同初始缺陷的尺寸对损伤扩展的影响,通过应用COMSOL Multiphysics仿真建模软件,建立了激光对带微缺陷的砷化镓腔面辐照的有限元仿真模型。在仿真建模中,首先选择瞬态研究开始进入建模界面,选择的物理场为“固体传热”,定义砷化镓的相关参数,定义激光热源,相关的中间变量以及应用到的因变量,分别将初始缺陷设置为锥形,柱形以及球形。最后对建立的模型进行网格划分以及分析研究。仿真建模完成后,通过修改初始微缺陷的参数,如宽度,深度以及缺陷的类型,对不同尺寸的初始缺陷以及相同尺寸不同类型的初始缺陷对损伤扩展的影响进行了定量研究分析。研究结果表明,损伤扩展深度同初始缺陷的深度成正比,同时与初始缺陷的宽度成反比。同时,初始微缺陷的上表面积越大,损伤扩展的深度也越大。为分析砷化镓腔面气化前的损伤状态,以温度场和应力场为基础建立了多物理场耦合机制,对缺陷诱导的砷化镓腔面的热应力损伤进行了研究与分析。并对不同尺寸和不同形状的初始微缺陷诱导的热应力进行了热应力损伤模拟研究。研究结果表明,腔面最大热应力和热形变均位于缺陷边缘,而不是光斑中心。同时,热应力导致的形变量同初始缺陷的宽度,体积以及光斑半径成反比,同初始缺陷的深度以及激光功率成正比。
其他文献
有机发光二极管(Organic light-emitting diodes,OLEDs)具有自发光、面光源、大色域、快响应、低功耗及可柔性制备等诸多优点,在固态照明与全彩显示领域具有巨大应用前景,近年来成为科研界及产业界的研究热点。OLEDs的制备工艺主要有真空热蒸镀法及溶液成膜法两种。与真空热蒸镀法相比,溶液成膜法具有设备投入小、制备工艺简单、节约材料及适合大尺寸制备等优点,在OLEDs的制备方
近十几年,国内电子半导体行业发展迅速,对靶材的需求不断扩大,优良性能靶材的生产已成为支撑我国半导体行业发展的重要产业。磁控溅射靶材的利用率和溅射产额一直都是研究者广泛关注并着力解决的问题。靶材的利用率和溅射速率主要受靶材表面等离子体的影响,而等离子体在靶面的分布是由靶材背面的磁体所产生的磁场来决定。因此,优化磁场结构是提高靶材表面刻蚀均匀性的关键,而实际实验和生产中却很难做到靶材表面的均匀刻蚀来增
InGaN/GaN量子阱已被广泛应用于蓝色、绿色甚至黄色光谱范围的发光二极管(LEDs)和激光器二极管(LDs)。但是,当发射波长从蓝光转变到绿光时,InGaN/GaN量子阱的内量子效率(IQE)急剧下降,这个问题被称为“Green Gap”。假如黄绿光波段的GaN基LED发光效率能够得到提升,不仅可以解决“Green Gap”问题,而且可以促进多色合成白光的广泛应用。在绿光波段,InGaN量子点
铅卤化物钙钛矿纳米晶由于吸收光谱范围宽、光谱带隙可调、载流子迁移率高、缺陷密度小和色纯度高等优异的光电性质引起了科研工作者广泛的关注。其被广泛地应用于发光二极管(light-emitting diodes,LED)、太阳能电池、光电探测器和激光器等光电器件中。目前钙钛矿纳米晶的制备方法主要有热注入法、重结晶法、超声法和溶剂热法等。但是上述方法存在以下缺点:(1)反应过程中需要高温和惰性气氛,材料成
自由空间光通信是空间信息网络中高速信息传输的重要手段,相比传统的通信技术更具信息传输的安全性及抗干扰能力。目前该技术存在着频谱利用率低、通信信道容量不足等问题。理论上,利用携带轨道角动量(orbital angular momentum,OAM)的涡旋光束作为光通信的信息载体,通过轨道角动量这一新自由度进行信息编码,可解决上述问题。然而,在实际应用中,涡旋光束在复杂信道中传输时必然会受到空间中大气
太赫兹(THz)是指频率在0.1THz~10THz(0.03mm~3mm)之间的一段电磁波,在电磁波谱上它位于微波和红外光之间。与其它频段的电磁波相比,太赫兹波自身具有宽带性、高穿透性、相干性、安全性等优良的特性,也因为如此太赫兹光谱技术在安全检查、国防军事、化学成分分析等领域得到广泛的应用,尤其这几年在无损检测方面备受人们的关注。在水泥材料领域内,内部的孔结构、缺陷等都将直接影响结构的承载力和耐
随着大功率电子元器件逐步向着微型化、高度集成化方向发展,其工作时的热流密度迅速提高,如何设计高效可靠的冷却方案对保证其安全运行至关重要。射流冲击作为一种高效强化换热技术,有着非常高的换热系数,是解决未来高热流密度散热问题的热门技术之一。相变微胶囊悬浮液是一种集储热、温控与强化传热于一体的功能性流体,其相变囊芯在固液相变过程中可吸收或释放大量潜热,具有很大的当量比热,可明显提高流体的对流换热能力。基
混沌激光具有宽频谱,类噪声等特性,在混沌保密通信、混沌雷达、物理随机数生成、光时域反射测量和分布式光纤传感等领域具有重要应用。混沌激光的产生通常采用结构简单的光反馈半导体激光器,存在反馈外腔引起的混沌时延特征(TDS)、弛豫振荡频率导致混沌频谱不平坦、带宽(BW)窄等问题,这限制了混沌激光的应用。因此,亟需开展抑制混沌时延特征与增强混沌频谱带宽等混沌特性优化的研究。本文提出利用单模光纤中的色散和自
激光混沌凭借其复杂的动力学特性和极高的传输速率推动了高速混沌通信系统的发展。半导体激光器作为目前产生激光混沌最广泛的光源,研究人员提出了许多基于此类激光器实现混沌同步的方案。然而,大多数构成激光混沌通信系统的半导体激光器是不能直接输出混沌信号的,通常需要添加外部扰动来驱动输出混沌,例如带有时间延迟的光反馈、光注入、噪声等。这些外加结构使得系统在设置、运行、维护等方面都相对复杂,因此为了确保良好同步
温度和应变是反映工程结构受力和健康状态的重要参数,也是对关键基础设施进行灾变预警和科学管理的重要检测内容。在实际工程应用中,许多待测参数能够转换成温度和应变量进行检测。光纤布拉格光栅检测技术是一种较为新颖的检测技术,该技术检测原理是利用光纤光栅的中心波长对温度和应变敏感的特性,将其所处环境下的温度与应变转换为波长量。此外,光纤布拉格光栅具有检测寿命长、检测精度高、不受电磁干扰、抗腐蚀性强、可组检测