基于光氧化反应的荧光诊疗探针的构建及应用研究

来源 :华南理工大学 | 被引量 : 0次 | 上传用户:ReganCai
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
化学疗法是疾病临床治疗的主要方式之一。传统的化疗药物靶向性差,在破坏肿瘤病灶组织的同时也会对正常组织造成损伤,限制了其临床应用。激活型的化疗通过对化疗药物分子进行刺激响应基团的修饰,可在p H、酶、光和热等刺激下,在肿瘤病灶区域释放药物分子,有效提高肿瘤治疗的选择性,降低毒副作用。其中,光照控制具有高时空分辨的优势,可精准调控药物释放的位置与剂量,日益应用于肿瘤精准诊疗。然而,传统的光激活化疗药物所修饰的光响应官能团容易导致毒副产物的生成,例如:邻硝基苄基作为光剪切基团,在光照下会转变为有毒性的邻亚硝基苯甲醛,不利于其临床上的应用。因此,亟需构建无毒副产物生成的“绿色”光激活化疗策略。本研究基于光氧化脱氢反应和光氧化失电子反应,分别以二氢生物碱、吡咯为底物,原位生成具有荧光成像与治疗功能的生物碱、吡咯阳离子自由基,探索了其在抗癌及抗菌中的应用,具体开展了以下两个方面的工作:(1)基于二氢生物碱的光激活荧光诊疗探针用于癌细胞成像和治疗苯并菲啶类生物碱具有优异的抗癌活性,但存在系统毒性,对正常组织和细胞有较大的毒副作用,这限制了生物碱的临床应用。为了降低这类生物碱的毒副作用,本研究基于“绿色”的光氧化脱氢反应,提出了生物相容性好和无毒副产物产生的光激活化疗策略。本研究以低毒性的天然产物二氢血根碱和二氢两面针碱为前药,利用光照诱导其在癌细胞内发生光氧化脱氢反应,原位转变成高毒性的生物碱血根碱和两面针碱,实现光激活化疗和癌细胞的精准杀灭。并利用血根碱自身的红色荧光实现了癌细胞核靶向的高时空分辨成像,同时利用两面针碱的光动力活性实现了光激活化疗-光动力联合治疗。该策略可以通过荧光成像实时监测药物的原位生成过程,有效降低化疗药物对正常细胞的毒副作用,有利于精准抗癌的临床医学应用。(2)基于吡咯阳离子自由基的红色荧光探针用于细菌标记红至近红外荧光团具有组织穿透深度大、受自发荧光干扰小等特点,在生物成像与诊疗应用中具有独特的优势。然而传统的红至近红外荧光团结构复杂、合成步骤繁琐。为了开发结构简单的红至近红外荧光团,本论文设计合成了一系列2,5-二甲基吡咯衍生物,并利用光照诱导其发生光氧化失电子反应,生成具有红色荧光的阳离子自由基。初步探索了吡咯衍生物的取代基对阳离子自由基生成效率的影响,并利用红色发光的阳离子自由基作为细菌的成像单元,用于对革兰氏阳性菌的荧光标记成像,实现对细菌与巨噬细胞相互作用的监测,为后续针对细菌的诊疗研究提供了基础。
其他文献
癌症是威胁人类健康的头号杀手之一,目前仍没有针对癌症特别是晚期癌症的有效治疗方法。随着人类对肿瘤微环境特异性生化特征(高表达的H2O2、GSH以及弱酸性)的认识,出现了新型无创肿瘤治疗方法,包括光动力治疗(PDT)、化学动力学治疗(CDT)以及声动力治疗(SDT)等。它们的抗癌原理都是基于肿瘤微环境特征,通过在胞内产生足够多的活性氧(ROS),诱导细胞死亡或凋亡。特别是化学动力学治疗,相比传统治疗
学位
材料表面的润湿性主要由其表面的结构和化学成分共同决定,对材料的应用具有很大的影响。受荷叶、水黾、玫瑰花瓣等自然界中超疏水表面的启发,人们制备了各具特色的超疏水材料,并将其用于表面自清洁、抗结冰、油水分离和微液滴运输等领域。超疏水材料的制备通常是在有机溶剂体系中完成的,这增加了废液处理难度和环境污染风险,因此开发基于水醇溶剂体系的稳定超疏水材料对其广泛应用有着巨大的现实意义。本文引入贻贝仿生材料聚多
学位
铅基卤化物钙钛矿太阳能电池(PSCs)发展迅速,电池光电转化效率(PCE)当前已经突破到25.7%,有望成为下一代最有前景的光伏技术之一。虽然PCE足以媲美晶硅太阳能电池,但钙钛矿光活性层中Pb的环境毒性是实现PSCs广泛应用亟待解决的重要问题。物理降铅,即通过降低铅基钙钛矿光吸收层厚度来减少Pb含量,是降低PSCs环境毒性的重要途径之一。然而,光活性层厚度的降低会直接导致钙钛矿光吸收能力的减弱,
学位
通过进课程教材开展中华优秀传统文化教育,是传承弘扬优秀传统文化的基础路径,是促进青少年发展的铸魂培根工程。在核心素养教育改革下,传统文化教育的核心在于提升传统文化素养。青少年作为传统文化传承与弘扬的主体力量,其传统文化素养水平必然会引起国家与社会的重视与关注。但目前对青少年传统文化素养鲜有系统研究涉及,这不仅限制了青少年传统文化素养的进一步提升,还束缚了传统文化教育的针对性开展。鉴此,本研究从核心
会议
水气界面是江河湖海与大气之间物质传输的边界层,对于各种自然界中典型的物理化学过程,如有机物的合成、转化、循环及气溶胶颗粒的生成至关重要。然而,由于水气界面极易受到扰动,表征水气界面的物理化学特性仍面临着巨大挑战。由于缺乏合适的表征技术,我们对水气界面附近有机污染物的界面行为和传质过程缺乏基本的了解。获知有机污染物的水气界面动态行为的最重要一环是对水气相之间这一交界薄层(水气微表层,AML)内的有机
学位
钙钛矿太阳能电池(PSCs)是当前发展速度最快的新兴光伏技术,并已取得了高达25.7%的光电转化效率,可与单晶硅太阳能电池(26.1%)相媲美。PSCs效率的飞速提升主要归因于器件对光的捕获与充分利用以及高效的载流子传输过程。其中,光生电子在电子传输层(ETL)中的传输是整个载流子动力学过程中最慢的一环。因此,促进电子传输对于PSCs效率的进一步提高至关重要。研究表明,降低ETL的厚度可有效地降低
学位
环境污染和能源短缺已经成为当今世界亟待解决的两大难题。利用半导体材料的光催化技术降解环境污染物,实现能源转化一直受到人们的广泛关注。然而,目前半导体的催化反应效率仍然很低,其中影响催化反应效率最主要的因素是光生载流子的复合。本文针对催化材料中光生载流子分离效率低等问题,提出了以下方案:(i)通过原位合成方法制备和构建具有充分接触界面的type-Ⅱ异质结催化材料,以此实现对光生载流子的高效分离,进而
学位
建立柔性可穿戴温度传感器实时监测人体的温度,对实现个性化健康监测和人机交互至关重要。相比于易受电磁干扰、结构复杂以及含有电气安全等问题的柔性电子传感器,建立具有检测速度快、灵敏度较高、抗电磁干扰等优点的柔性荧光光学温度传感器是一种很好的解决策略。然而,传统荧光检测光路对环境要求极其苛刻,应用于柔性传感时,荧光信号很容易受到柔性传感器拉伸应变以及环境的影响,导致目前的荧光温度传感无法进行高灵敏度、长
学位
钛合金作为一种比强度高、耐蚀性能优秀、抗疲劳性能良好的材料,被广泛应用于海洋工程中,但钛合金在海洋环境中存在严重的生物污损问题,影响了其应用的可靠性和效率。层状双金属氢氧化物(Layered Double Hydroxides,LDHs)是具有负载防污物质功能的材料,在钛合金表面构建负载抗污剂的LDHs复合膜层,可以解决其在海洋环境中的生物污损问题。本课题的研究目的,就是探索钛合金表面原位生长LD
学位
能源使得世界能够持续运转。然而,随着能源危机与环境污染的日益严重,清洁无污染能源的开发迫在眉睫。太阳能取之不尽、用之不竭,且绿色环保,是一种理想的清洁能源。利用光伏效应将太阳能转化为电能的聚合物太阳电池(PSCs)因具有质轻、柔性、低成本、可溶液加工等优点而备受人们关注。近年来,随着材料结构的不断创新和器件加工工艺的进步,PSCs的能量转换效率(PCE)已经接近能够产业化应用的水平。然而,活性层材
学位