频率选择表面宽带微波窗口特性设计与应用分析研究

来源 :华中科技大学 | 被引量 : 0次 | 上传用户:joelin0725
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
军用飞行器等雷达低可见平台,其天线系统作为强散射源是整体雷达散射截面(RCS)的主要贡献者,因此,天线隐身成为飞行器关键技术而备受关注。利用频率选择表面(FSS)的电磁吸波体不仅能作为有带通特性的天线罩来缩减天线的RCS,而且能置于天线辐射的后向区来缩减天线的RCS。因此,本文结合不同天线的辐射特征,分别设计了宽带吸波体结构用于缩减Vivaldi阵列天线RCS和宽带反射的频率吸收选择反射体(FASR)结构用于缩减微带偶极子天线的RCS,以达到天线隐身的目的。本文首先通过分别从场观点和路观点出发,对端接负载的传输线的反射系数进行了计算,解释了可以通过等效电路的方法对FSS结构进行设计和分析。为了快速确定等效电路参数,进一步研究了一段分布估计算法,在给定一个性能指标的前提下,可以通过此算法拟合出满足性能指标的具体电路参数,。利用等效电路理论设计了一个窄带反射的频率吸收选择反射器结构,并通过仿真计算其反射系数分析了等效电路构建的有效性。然后针对Vivaldi天线阵列,设计了四周加载电阻的方环单元结构FSS宽带吸波体,并对其进行仿真和测试。结果表明,仿真测试具有较好的一致性。将天线阵列与FSS宽带吸波体结构复合,对复合结构的辐射特性进行仿真,研究了吸波体结构对天线阵列电性能的作用规律。进一步对复合结构的散射特性进行仿真计算,结果表明,FSS宽带吸波结构可以在5~15 GHz内对天线RCS都有缩减作用,达到了在较宽频带内对该Vivaldi天线阵列隐身的目的。最后针对F型印刷偶极子天线,设计了宽带反射的多层频率吸收选择反射体结构。该结构分为低频透波高频吸波(TA)层和低频吸波高频反射(AR)层两部分,AR层是四周加载电阻的金属方环内置金属方片为单元的周期阵列,实现了在2.2~6.8 GHz频段内S11-1 d B的强反射。TA层是四边加载电阻的金属十字型结构与下部两层金属方片为单元的周期阵列,实现了在2~12 GHz频段内S21>-1.15 d B的透波和13~18GHz频段内S11<-10 d B的吸波。将AR层和TA层复合得到宽带反射的FASR结构,仿真分析实现了在2.2~5.2 GHz和13.5~17.1 GHz频段内S11-1.5 d B的反射,且仿真和测试结果相一致。由此,将设计好的宽带反射FASR结构与F型印刷偶极子天线复合,研究其整体辐射特性。结果表明,宽带反射FARS结构对天线端口匹配影响较小,并且提高了天线的带内增益,达到了提高天线带内辐射性能的目的。后进一步仿真计算了宽带反射FASR结构与天线复合的散射特性,分析表明宽带反射FASR结构对天线带外RCS有一定的缩减作用。
其他文献
目的:肝纤维化是多种肝脏疾病的病理特征,其本质是肝星状细胞分泌的细胞外基质(ECM)代谢失衡,合成增多而降解减少。肝星状细胞(HSC)活化是肝纤维化发生发展的关键细胞学机制,本课题组前期通过全基因组表达芯片分析,在活化肝星状细胞中找到差异性表达的自噬相关基因BNIP3。Bnip3(Bcl-2/腺病毒E1B-19k Da相互作用蛋白3)是参与调节细胞自噬、凋亡和基因转录调控的多功能分子,我们推测在肝
低频通信得益于低频信号的强介质穿透能力,主要应用于透地通信和水下通信等。中低速数据传输常使用频移键控(Frequency-Shift Keying,FSK)调制作为通信方式,这是因为FSK具有抗噪声能力强与抗衰减性能好等优点。目前常用感应式磁天线接收低频信号,但是其体积和质量较大,为实现接收天线的小型化,本文基于磁电效应研究了高灵敏度低噪声低频通信磁电天线。相较于现有的直接天线调制的磁电天线,本文
神经元形态重建,是从三维神经图像中量化神经元的拓扑结构和几何特征。神经科学研究表明,神经元的量化数据可以直接用于神经元形态相关的统计分析和生物学分析,已成为神经图像数据通往神经科学新知识的桥梁。神经元由胞体和神经纤维构成,神经纤维的投射揭示了其信息传递的过程。神经纤维重建是神经元重建中最重要的一个环节。现今,神经纤维重建工具的效率较低,其原因之一是,在分离缠绕的神经纤维时,难以有效地识别神经纤维的
随着人工智能技术的飞速发展,智能机器人越来越多地出现在人们的生活中,并且在一些领域里已经在能力表现上超过了人类,比如,围棋、乒乓球等。未来,随着科技的进步,智能机器人在越来越多的领域超过人类可能会成为常态。前人的研究表明,智能机器人会让消费者产生身份威胁感和厌恶感。那么,对于那些智能机器人在能力上超过了人类的领域,人们是会基于竞争的心态更加愿意参与该领域的项目,还是会产生消极心态而不愿意再参与该领
背景:卵巢癌是最致死的妇科肿瘤。由于卵巢癌基因组高度不稳定和肿瘤异质性,卵巢癌患者复发难以避免,并且不可治愈。目前迫切需要找到一个有效的靶点改善卵巢癌的预后。C/EBPβ募集组蛋白3赖氨酸79(H3K79)甲基转移酶DOT1L,使染色质维持在开放状态,促进多种基因的转录,包括DNA损伤修复通路、铂耐药基因和促肿瘤生长信号通路,提示C/EBPβ可能是调控卵巢癌恶性表型的主要调节因子。目的:本研究旨在
随着硅基MEMS工艺技术与应用水平的不断提高,MEMS的结构从二维结构发展到三维结构,高深宽比微沟槽结构因其具有狭窄而垂直的空气间隙和较大的比表面积,广泛应用于梳齿状微电极阵列、微纳谐振器、加速度传感器、超级电容器、光栅等领域。为了提高MEMS器件的质量并确保器件产率,需要对MEMS高深宽比三维特征尺寸进行测量与分析,在MEMS高深宽比三维特征尺寸中,以深度、宽度、侧壁角这三种参数对MEMS器件性
最近几十年,关于非线性浅水波方程的研究已取得了许多重大成就.其中,对于里程碑式的Camassa-Holm方程的研究更是为许多专家学者所倾心.不同于传统的关于CH方程的研究,本文研究了模拟湍流的带粘性项的Camassa-Holm方程,也被称为Navier-Stokes-alpha方程.我们研究了在两种不同的扰动下孤立波解的存在性,分别为:带有粘性项的CH方程和具有非牛顿流体性质的CH方程.在本文中我
电磁超声测厚具有非接触的优点,在高温、在线、不停机检测中有着广阔的前景。然而,电磁超声测厚传感器换能效率及信噪比低限制了其进一步工程应用。针对这一问题,本论文研究传感器结构和激励参数对测厚信号的影响并开发相应信号处理方法,以提高传感器换能效率、检测效率和测厚精度。首先,提出基于涡流能量分配原理的电磁超声测厚传感技术并研制换能效率高的电磁超声测厚传感器。在分析电磁超声洛伦兹力换能机理的基础上,获取试
基于多芯光纤的强度调制-直接检测空分复用传输系统凭借其快速成倍地提升传输容量的优势,在数据中心短距光互连中应用潜力巨大。然而,高纤芯密度的多芯光纤引入了新的物理损伤——芯间串扰。在灵活光网络中,芯间串扰会显著恶化传输质量参数,造成误码率的增大,甚至信号中断。同时,串扰在时域与频域中表现出波动特性。在传输强载波的信号时,例如OOK与PAM4,该波动会更加剧烈。因此在空分复用光网络中,急需引入光性能监
利用环境射频信号(Radio Frequency,RF)作为载波的环境背向散射通信(Ambient Backscatter Communication,ABC)技术能够在微瓦级的功耗下实现无线通信,是低功耗物联网(Internet of Things,IoT)极具潜力的实现方案之一。然而,环境射频信号来源复杂,信号强度远大于背向散射信号,对在同一信道传输的背向散射信号造成了严重的自干扰。自干扰使得