滴管炉中生物质三组分含量对生物质着火行为的影响研究

来源 :华中科技大学 | 被引量 : 0次 | 上传用户:huandakedi222
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
由于在燃烧过程释放的CO2形成“碳平衡”和很低的SO2、NOX等污染物的排放,生物质被认为是一种很有应用前景的环境友好型的清洁可再生能源。生物质的燃烧是生物质能利用的一个重要方式,因而已有大量关于生物质的着火与燃烧行为的研究。但是,在高加热速率下,生物质三组分对于生物质的着火行为的影响,到目前为止尚未见报导。
  本文采用高速摄像仪结合辐射图像处理测温技术,首次在滴管炉(壁温为1273K)中对粒径为74-150μm的纤维素、半纤维素和木质素在空气气氛下的着火行为进行了研究,也测量记录了粒径为500-700μm的稻秆、黄豆秆、玉米秆、花生壳、板栗壳、竹子和木屑等七种生物质颗粒的着火行为,对比生物质三组分和生物质着火过程的图片和温度演化,探究了纤维素、半纤维素和木质素对生物质着火的影响。
  纤维素、半纤维素和木质素在滴管炉中的着火实验结果表明:在壁温为1273K的滴管炉中,纤维素和半纤维素发生均相-非均相着火机理,木质素则发生均相着火机理。纤维素和半纤维素的燃烧时间很短,木质素燃烧持续时间较长。木质素均相着火后,有一段温度缓慢增加的均相燃烧过程,在焦发生着火后,温度急剧增加;纤维素和半纤维素在均相-非均相着火后,温度急剧增加。
  七种生物质在滴管炉中的着火实验表明:生物质颗粒的着火机理在很大程度上取决于生物质颗粒中木质素的含量。木质素含量极低的稻秆的着火机理属于均相-非均相着火机理,另外六种木质素含量中等以上的生物质为均相着火机理。对于均相着火机理的六种生物质,生物质着火后6-7ms温度上升期的温升速率与木质素含量密切相关。生物质中木质素含量越高,着火初期温升速率越快。生物质焦的着火和燃烧导致生物质颗粒燃烧温度的快速升高,木质素含量越高,生物质焦越早被点燃。木质素含量适中(10%-30%)的生物质从均相着火到最高温度水平的时间比木质素含量高(>30%)的生物质从均相着火到最高温度的时间长得多。
其他文献
我国燃煤发电的煤炭消耗量巨大,随着环保要求的不断提高,燃煤过程的砷等有害痕量元素排放带来的环境污染问题逐渐受到社会关注。开发经济可靠的燃煤电厂砷排放控制技术是当前研究热点。本文在调研文献的基础上,选用配煤掺烧调配矿物控制砷的排放的技术路线开展研究。开展煤中不同矿物组分的气相砷吸附实验,以掌握不同矿物组分对砷的吸附特性,基于此提出了利用释放指数评价煤中砷的挥发特性的模型,并考虑燃烧过程矿物对砷的释放
选择性催化还原(SCR)是应用最广泛的烟气脱硝技术。目前商用SCR使用钒钛催化剂,活性温度窗口(300-400℃)较高且窄,在燃煤电厂烟气脱硝时需布置在高温高尘区,长期运行存在磨损、堵塞等问题;由于活性温度窗口受限,也无法适应水泥炉窑、烧结烟气的脱硝需求。因此开发低温(<300℃)SCR技术是当前工业源烟气NOx排放控制的重大需求。然而,低温SCR催化剂难以克服SO2中毒问题,是低温SCR技术商业
学位
我国每年产生的生物质农林业废弃物占据世界的首位。燃煤耦合生物质气化发电将生物质气化产生一定热值的燃气送入燃煤锅炉辅助燃烧,是一种可以大规模处理生物质、与生物质直燃发电相比具有较高发电效率的技术。这种间接混燃的发电技术已被列为国家新增鼓励产业,目前已有一些工程案例。成型技术将生物质能源品质提升,但会改变其组分。目前成型生物质的流化床气化特性、结渣特性研究报道较少,且气化过程中会产生大量的焦炭,对其规
选择性非催化还原(SNCR)技术通过氨还原剂直接喷入高温烟气,将氮氧化物(NOx)还原成N2和H2O,是目前垃圾焚烧电站控制NOx排放最主要的手段之一。但工业实际中,因SNCR脱硝受温度窗口和还原剂与烟气混合效果的限制,脱硝效果根本无法满足日益严苛的排放标准。本文基于含氧化合物类添加剂能一定程度拓宽温度窗口,及生物油富含各种含氧化合物角度考虑,在高温管式炉上实验研究了生物油强化SNCR脱硝潜力。在
学位
太阳能光热发电技术能够清洁高效地将太阳能转化为电能,发展该技术有助于减少现代社会对化石能源的依赖,并加速当前能源结构的转型。吸热器承担着将太阳能转化为热能的关键作用,对其进行研究与优化可以有效提升太阳能光热发电系统的总效率。本文从光学和热学两个方面对锥形腔式太阳能高温吸热器进行了模拟研究与分析,探究了几何参数和盘管布置方式等因素对吸热器换热特性的影响规律。  本文根据现有碟式聚光镜的几何结构,设计
槽式太阳能光热发电技术是一种新型的清洁发电技术,可以高效地将太阳能转化为热能,是解决当前能源危机与环境污染重要的途径之一。集热器是太阳能光热转换的核心设备,采用纳米流体作为集热器的传热介质,是提高集热器效率的有效措施。论文对基于多壁碳纳米管/导热油纳米流体的槽式太阳能集热器进行了数值模拟,并开展了相关的实验研究。  论文首先建立了太阳能槽式真空集热器的光学模型。根据蒙特卡洛射线追踪法的原理,使用光
纳米颗粒的火焰喷雾热解(FSP)合成法具有合成效率高、易放大、控制变量多、污染小等优点,是一种很有前景的功能材料合成方法。但这个过程是一个多尺度、非线性、强湍流、复杂颗粒动力学演变过程,用理论和实验方法很难理解并优化该过程。将计算流体力学(CFD)与颗粒群平衡模型(PBM)结合是研究火焰喷雾热解过程、预测纳米颗粒产品性质的有效方法。尽管有多种CFD方法和多种PBM方法,但湍流燃烧的大涡模拟(LES
学位
氧化物半导体气敏传感器由于价格便宜、使用方便的特点,是目前应用最为广泛的化学传感器。然而,单独的金属氧化物的气敏性能很难满足实际的要求。因此,目前最为常见的改进手段是通过掺杂来提高灵敏度、缩短响应时间等。此外,不同的合成方法对最终材料的气敏性能也有着很大的影响。与传统的湿法合成相比较,火焰喷雾热解制备法具有其天然的优势,能够一步快速制备功能形貌可控的纳米材料。本研究首次利用火焰喷雾热解方法合成了不
基于氧化钙的碳酸化-煅烧循环反应的CO2捕集技术,简称钙循环技术,是当前研究较多、前景较好的CO2捕集技术之一。然而,该技术存在两个难题:其一,在长期的循环使用中,钙基吸附剂易发生烧结而导致吸附能力下降;其二,烟气中存在的少量SO2会严重影响到钙基吸附剂的循环CO2捕集性能。针对以上两个问题,本文通过碱金属改性的方式提高不同类型钙基吸附剂的循环性能,并研究了硫酸化对碱金属改性吸附剂CO2捕集容量的
学位
为应对世界能源危机和温室气体排放,生物质能作为一种储量丰富、分布广泛、可再生、二氧化碳中性的能源,是传统化石燃料理想的替代品。生物质主要由纤维素、半纤维素和木质素三种组分组成,而三组分将会影响生物质的热解及燃烧行为。增氧燃烧是一种低氮、减排二氧化碳的燃烧方式,同时可以增强生物质燃料的燃烧稳定性。生物质增氧燃烧技术综合了二者的优势,是一项具有前景的技术。本文在滴管炉实验台架上,采用高速摄像机和图像处
学位