不同状态下细胞表面新型囊泡运动的研究

来源 :南昌大学 | 被引量 : 0次 | 上传用户:philippetr
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近年来发现细胞表面存在一种非释放性的新型囊泡。目前,对该种细胞表面囊泡的组成、结构、产生、运动、命运和功能均知之甚少。细胞的铺展和迁移是两种重要的细胞状态。本论文猜测在不同的细胞状态下细胞表面囊泡的产生和运动规律可能不同。因此,本论文对不同细胞状态下细胞膜表面囊泡进行单囊泡追踪分析。首先,细胞铺展状态下,分别用OxLDL,TNF-α,VEGF和LPS刺激HUVECs后,细胞间粘附分子(ICAM-1)的表达水平都增高,证明这些试剂能刺激细胞的活化;MβCD可以显著剔除HUVECs细胞质膜胆固醇,从而改变细胞质膜的流动性。随后的单囊泡追踪分析发现,OxLDL,TNF-α和VEGF导致细胞表面囊泡的平均数量显著增加,同时显著提高细胞膜的运动速率,但不会显著影响细胞表面囊泡的位移(移动范围)。其次,细胞迁移状态下,分别用Ang-1,OxLDL,TNF-α,VEGF和LPS刺激HUVECs后,细胞中Rho A(Rho GTPase)表达水平增强,且细胞的迁移率显著提高,证明这些试剂能够促进细胞迁移。随后的单囊泡追踪分析发现,OxLDL,TNF-α和Ang-1显著增加了细胞表面囊泡的平均数量,同时,OxLDL,TNF-α,LPS,Ang-1和VEGF可显著提高细胞表面囊泡的运动速率;OxLDL显著扩大了细胞表面囊泡的位移。为了进一步研究细胞骨架与细胞表面囊泡的关系,本论文用Cytochalasin D和Nocodazole分别破坏细胞内的微丝和微管(两种细胞骨架),再进行单囊泡追踪分析。实验发现,在两种细胞状态下,细胞骨架的破坏都能导致细胞表面囊泡数量的显著增加以及囊泡运动速率和运动范围的显著下降。结果表明,细胞表面囊泡的产生和运动规律与细胞骨架有紧密关系。综上所述,细胞表面囊泡的产生和运动可能受到多种细胞状态(比如细胞活化、细胞膜的流动性、铺展和迁移等)的影响,而且可能受到细胞骨架的调控。本研究对于深入了解细胞表面囊泡的产生和运动规律具有重要意义。
其他文献
本文选题来源于国家自然科学基金项目“云南红土型大坝的干湿循环效应研究”(项目编号:51568031),以云南红土为研究对象,针对红土型大坝存在的渗漏、稳定问题,提出了“库水位升降下红土型大坝的渗流-稳定性研究”课题。考虑库水位升降时间、升降速率、升降高度的影响,利用ABAQUS有限元计算软件,研究了库水位升降条件下红土型大坝的渗流-稳定性变化。该研究成果对于有效防治红土型大坝的渗透问题,提高红土型
本实验研究了影响正渗透膜性能的几个基本因素,并且使用不同的有机酸(甲酸,乙酸,乳酸)作为添加剂改善正渗透(FO)膜性能。扫描电子显微镜(SEM)显示所有FO CTA膜都由两个致密皮层和海绵状支撑层组成。另外,从原子力显微镜(AFM)的表面粗糙度值分析,以乳酸作为添加剂的膜和没有添加剂的膜有类似的粗糙度,比甲酸或乙酸的膜粗糙度更大。此外,含酸的膜的水通量得到改善,反盐通量降低。用乳酸作为添加剂的膜分
随着环境污染和能源问题的加剧,热电材料作为一种能够实现热能和电能之间自由转换的功能材料而得到广泛关注。Bi-Te基热电材料是室温附近应用最成熟的热电材料,但热电性能较
超级电容器是最有前途的新型储能器件之一,具有高倍率性能、长循环寿命、安全性能高等优点。碳材料是是常用的超级电容器电极材料,但其较低的能量密度阻碍在实际中的应用。过渡金属氧化物具有成本低、资源丰富、高的氧化还原活性等优点,被看作是有前景的电极材料种类之一。超级电容器的储能是通过电极材料提供的活性位点或者表面原子来储存电能的,因此其活性位点或表面原子越多,电极储存电能的能力就越强。通过对材料的微观形貌
吲哚与咔唑类化合物作为重要的含氮芳杂环化合物,在医药、染料、光电材料和精细化工业产品中有广泛应用,因此如何高效的合成吲哚与咔唑类化合物成为化学工作者的研究热点之一。本论文主要研究了吲哚类化合物与咔唑类配体的合成,可以分为两个部分:第一部分:研究了铁促进的过硫酸钾氧化分子内C-N偶联合成吲哚。以2-苯基乙烯基苯胺类化合物为底物,探索了在氟化亚铁的作用下,用过硫酸钾为氧化剂,通过分子内C-N偶联合成吲
植被生态水是指与地表植被紧密相联的水体,包括植被叶面、根系、腐殖层、表层根系土壤层及植物体本身所截留或涵养的水量。植被生态水是陆地生态系统水循环中的一个特殊过渡
超表面技术的发展极大地拓宽了电磁场领域的研究范围,在天线性能的改善和隐身防护等多个方面被广泛地应用。超表面技术具备特殊的电磁调控能力,对电磁波的相位调控能力应用在波束调控等方面,能够任意调节散射波束的形状,进而实现对电磁波的有效调控,因此新型人工电磁材料在诸多领域备受关注,并广泛应用于对多种功能器件的研究。使用超表面技术构造的吸波阵列,能够在特定的频段实现对电磁波的吸收。三维(3D)模型的散射方向
为了监测发动机的工作状况,传感器需要尽可能贴近高温发动机表面,航空、航天、核能领域迫切需求能工作在500?C或者更高温度条件下的传感器。铋层状结构铁电陶瓷具备高居里温度、抗疲劳等特点,可应用于极端环境下工作的高温压电传感器,然而极低的压电性能限制了其实际应用。本文以居里温度极高(940?C)的CaBi_2Nb_2O_9(CBN)为研究对象,采用固相反应法合成多元稀土元素(Li,Ce,Sm)、(Li
吲哚是一种重要的含氮杂环化合物,它们的衍生物在自然界中分布广泛,许多含有吲哚结构单元的天然化合物都与生命活动密切相关。目前,吲哚类化合物在气相中的反应机理引起了人们的关注。本工作主要采用电喷雾电离源-碰撞诱导解离技术(ESI-CID-MS/MS)结合氢氘交换实验、区域氘代标记实验以及量子化学密度泛函理论计算对3-苯磺酰基吲哚衍生物、2-苯磺酰基吲哚衍生物和3-苯硫基吲哚衍生物这三类有机化合物的C-
在气化技术中水蒸气是比较常用的气化剂,关于煤焦-水蒸气气化机理的实验探究已经较为详尽。但是对于气化反应内部的微观机理,由于常规实验手段不能观测反应中的原子运动与电子交换,所以目前对于微观机理的探索一般采用量子化学计算进行模拟研究。目前对于气化反应,尤其是水蒸气气化微观机理的探究仍有很多工作需要完善。除了对气化微观机理的补充,量化计算与气化反应的结合还存在可以改进的部分,诸如模型,反应体系和反应路径