TD3合金氧化性能研究

来源 :太原理工大学 | 被引量 : 0次 | 上传用户:happy_0421
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
TD3合金是一种中等Nb含量的(α2+B2+O)三相Ti3Al基合金,是我国航空发动机在研的高温钛合金之一,有望作为重要结构材料替代一些高温合金应用于航空发动机,但高温抗氧化性不足限制了其实际应用。目前,TD3合金的热强性已足够甚至超额满足当前需求,机械性能与传统高温材料相当,制约TD3合金替代传统高温材料的因素之一就是高温抗氧化性能较弱,长时工作温度限制在650~700℃,无法冲击更高服役温度。为了最大限度降低高温氧化带来的危害,提高TD3合金的高温抗氧化性能,就必须研究其高温氧化行为,探究影响TD3合金高温氧化性能的因素,为下一步提高TD3合金高温抗氧化性能提供实验依据。本文首先对TD3合金进行900℃、1000℃、1050℃退火处理,获得不同组织结构的TD3合金,利用X射线衍射分析仪及扫描电子显微镜分析其微观组织结构,并总结了TD3合金退火过程中的组织演变规律。结果表明:TD3合金原始材料经900℃退火处理后合金内部α2相未发生变化,细小片层状O相溶解在B2相中,形成更宽更短的片层结构。经1000℃退火处理后合金内部没有等轴状α2相存在,在B2相晶界处发现粗板条状α2相存在,B2和与O相形成B2/O相片状集束。经1050℃退火处理后合金内部O相呈V字型形貌,形成B2/O相片状集束,等轴状α2相分布在B2相晶界处。其次,对TD3合金原始材料及不同温度退火处理材料进行800℃恒温氧化实验和循环氧化实验,测量氧化增重绘制氧化动力学曲线,利用X射线衍射分析仪及扫描电子显微镜分析氧化层组成和结构,研究组织结构对TD3合金恒温氧化行为和循环氧化行为的影响。结果表明:组织结构对TD3合金800℃恒温氧化行为影响较小,不同组织结构TD3合金均表现出较好的抗恒温氧化性能。组织结构对TD3合金800℃循环氧化行为影响较大,不同组织结构TD3合金均表现出较差的抗循环氧化性能,主要原因为氧化膜的剥落。最后,结合基于密度泛函理论的第一性原理计算方法计算TD3合金各组成相(α2+O+B2)的原子空位形成能及氧原子在三相体相内的占位与扩散,探究TD3合金的氧化性能。结果表明:O相、B2相和α2相中Al空位形成能最低,在材料氧化初期,Al原子更易脱离基体内部向表面扩散,与氧原子结合形成Al2O3,三相均有一定的抗氧化能力。氧原子在O相、B2相和α2相中优先占据八面体间隙位置,且在富钛八面体间隙位置最稳定。根据氧原子在O相、B2相和α2相沿最佳扩散路径扩散需要跨越的势垒大小判断,氧原子在O相中扩散时最容易的,α2相次之,B2相中最困难。
其他文献
生物炭是一种新型土壤改良剂,它有吸附性和巨大的比表面积,这些特性使得它在改良土壤结构,保水保肥,防止坡面水土流失等方面有着很大的潜力。本文以室内试验为基础,探究合适的生物炭施用量,再利用人工降雨试验模拟田间裸坡情况,探究施用生物炭在裸坡上的作用,最后在室外田间真实测量施用生物炭后,坡面水土流失情况及坡面作物生长情况,并利用WEPP模型进行适用性分析,以期得到适宜的生物炭施用方式,为黄土高原坡面水土
学位
氨是生产生活中重要的化肥前体和化工原料,同时也是可再生能源工业理想的储能中间体和能源载体。目前,工业上大规模氨合成主要是通过传统的Haber-Bosch工艺,但此工艺严重依赖化石燃料,造成大量的CO2排放。能源密集型的Haber-Bosch工艺复杂而具有挑战性,是发展绿色、经济的氨合成路线的严重障碍。应社会经济可持续发展的需求,以可再生能源为动力的光电化学技术成为环境条件下合成氨最有前景的方法。M
学位
随着“超低排放”的严格执行和国民对环保意识的不断增强,工业废气逃逸的NH3对环境的污染引起了广泛的关注。在众多处理NH3逃逸的技术中,选择性催化氧化NH3(NH3-SCO)技术具有低运营成本、无二次污染、能耗小和适宜处理不同浓度NH3。但是该技术核心的问题是催化剂的制备。Cu基催化剂在选择性催化还原NOx(NH3-SCR)、CO氧化、甲苯氧化、NH3-SCO等环境催化领域中被广泛应用。由于TiO2
学位
煤焦油渣是一种在煤化工生产过程中产生的含有机组分较多的固体废物。若处理不当,易对环境造成污染。对煤焦油渣进行详细的结构及性质分析,能更好地实现煤焦油渣的有效处理和高效利用。同时CO2过度排放持续受到各国政府和研究学者的广泛关注,若不能有效落实碳减排,会导致气候变暖、环境恶化、粮食危机等一系列问题。CO2捕捉是未来全球实现碳减排最直接有效的技术手段之一。本文采用甲苯索氏萃取的方将煤焦油渣(CTR)分
学位
煤炭是重要的化石能源,其分级分质利用一直是煤化工领域研究的热点。干馏是煤炭清洁高效利用的一种重要途径,研究煤炭干馏过程中的结构变化规律对于改进煤炭热加工工艺和开发新技术具有重要意义。煤干馏的研究历史悠久,但多集中在静态离线研究以及工艺改进,关于原位研究,尤其是针对同步分析煤高温干馏过程中孔隙与碳骨架结构变化的原位表征尚未见报道,主要因素可能是受限于相应表征手段和原位干馏设备的开发。新型同步辐射X射
学位
颗粒增强型SiCp/Al复合材料在比刚度、比模量、耐磨性等方面拥有优越的综合性能,已广泛应用于航空航天、精密光学仪器仪表和微型电子设备等领域。但在利用有限元仿真手段揭示颗粒增强型复合材料加工机理、材料力学性能时,由于缺乏颗粒相三维形状和分布的有效测量手段,其仿真研究依然主要局限于二维阶段,或将颗粒简化为圆球形等较规则的形状进行三维建模。此外,颗粒增强型复合材料等多相结构材料的微观结构检测、评价目前
学位
随着氢燃料电池汽车的快速发展,氢气的储运量急剧提升,若由于意外发生泄漏可能导致燃烧爆炸,危害生命财产安全,因此对氢气泄漏点进行及时精确定位极其重要。鉴于声波法定位精度高、误报率低,很多研究者基于声波法进行气体管道泄漏的检测与定位,而新兴起的麦克风阵列技术通过相应算法可以对声源信号进行定位,是目前气体管道泄漏声源定位技术的发展方向。因此,本文根据气体管道泄漏的检测与定位原理,结合流体力学、气体声学等
学位
在21世纪清洁能源体系中氢能已成为最有前景的能源之一,通过电解水制备绿氢是实现氢能的关键。然而,阳极的析氧反应(OER)和阴极的析氢反应(HER)会消耗大量的能量,为降低制氢成本,使用廉价高效的催化剂显得尤为重要。近年来,过渡金属催化剂因其价格低廉、导电能力优异和催化活性较好,在电解水制氢中得到了广泛的研究。金属有机骨架材料(MOFs)材料具有超高的表面积、多孔结构和结构的可调变性,在电催化中得到
学位
丁二酸(SA)是生产可降解塑料聚丁二酸丁二醇酯的重要原料。目前,工业上生产SA主要通过石化资源合成,但石化资源属于不可再生资源,且其价格受外界的影响因素较多、波动较大,因此以木质纤维素和淀粉等可再生的生物基原料生产SA逐渐成为研究热点。生物发酵法制备SA的过程中通常需要不断的滴定碱液,以将反应环境维持在接近中性来保证微生物高效率地生产羧酸,导致发酵产物主要以丁二酸盐的形式存在,故在进一步生产SA衍
学位
轴承是机械设备的基础部件,其发展水平代表一个国家的先进加工、理论研究和制造技术的综合能力。轴承在机床、飞机和发动机等重大装备上被广泛使用,是提高高端装备性能、运行精度和使用寿命的关键零件。随着工业水平和大数据的发展,对于轴承故障诊断的研究,是我国工业实现数字化转型,由大转强的重要环节。行星齿轮箱是许多机械装备的重要组成部分,而滚动轴承是行星齿轮箱的重要零部件,因其工作环境差、工作负载大等问题,导致
学位