稀土双掺氟氧化物微晶玻璃的研究

来源 :长春理工大学 | 被引量 : 0次 | 上传用户:sbt200905
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
为了进一步探讨稀土掺杂材料在蓝绿波段的上转换发光机制,本文采用传统的熔融技术制备了不同基质材料的氟氧化物上转换微晶玻璃。 本文通过分析差热曲线,确定了实验的最佳熔化温度和退火温度,测定了样品的吸收光谱和在980nmLD激发下的上转换发射光谱,研究了上转换发光强度与激光泵浦功率的对数关系,同时,测定并分析了样品的拉曼光谱和电子扫描电镜图。 结果表明在Yb3+/Er3+双掺氟氧铝硼酸盐微晶玻璃的红光对应的上转换机理是三光子过程,绿光是双光子过程;而在其它系统:Yb3+/Ho3+双掺氟氧铝硼酸盐微晶玻璃,Yb3+/Er3+双掺氟氧硅酸盐微晶玻璃,Yb3+/Er3+双掺氟氧锗酸盐微晶玻璃中,对应的红光和绿光上转换发射机理都是双光子过程。同时我们还得到氟化物的引入可以有效地降低玻璃系统的声子能量,提高发光效率。
其他文献
采用硅胶和Sephadex LH20柱层析方法,从鲍氏层孔菌子实体提取物中分离得到8个化合物。运用NMR和MS等波谱法分析和鉴定为7(8),22(23)-二烯-3-酮-麦角甾烷、4,6,8(14),22(23)-
多吡啶过渡金属络合物因丰富的光物理行为和氧化还原性质被广泛应用于太阳能转换、光信息存储、传感器、超分子组装、光催化、非线性光学材料、光分子器件以及在生物体内作为
由于氟的原子半径小,电负性强等特点,含氟化合物往往具有独特的化学、物理和生物性能,目前含氟化合物已被广泛应用于医药、农药和材料等领域。因此,发展将含氟基团引入有机分子的高效方法是有机氟化学研究的热点之一。本论文首先合成了N-三氟乙基二苯甲酮亚胺1,然后利用此化合物尝试与叔丁基亚磺酰亚胺进行亲核加成反应,虽然未能得到预期产物,但分离得到了一个新的含氟砌块即烯基氟5。随后对反应条件进行了优化,可以从N
环境响应性润湿智能表面在微流体装置、智能膜、可控药物释放、传感器及湍流研究等领域具有潜在的应用前景。目前,光响应水润湿性可逆转换已具有一定的研究基础,但光响应油润湿性的研究鲜有报道。长氟碳链(-CnF2n+1,n≥8)化合物表面自由能极低,适于该类智能表面的制备,然而长氟碳链难被生物降解,具有持久性和累积性,严重危害环境,影响生物体及人类健康。本课题以有机-无机杂化材料低聚倍半硅氧烷(POSS)与
李白(公元七O一—七六二年),字太白,号青莲居士。唐陇西成纪(今甘肃省秦安)人。官至供奉翰林。李白诗名太盛,书名为诗名所掩,但是在历代书史专著中仍有记载。宋黄庭坚评曰:“
在材料科学领域,有机功能分子由于其独特的分子结构以及优良的光电活性引起了人们极大的研究兴趣。荧光材料理论最大内量子效率为25%,而磷光材料理论上可达100%,这将极大的提高有机电致发光器件的发光效率。在各类磷光重金属配合物中,平面四方形铂配合物由于其具有独特的发光性能在有机电致发光二极管(OLEDs)、化学和生物传感器、细胞成像及分子自组装等领域具有广阔的应用前景。配体的共轭程度、刚性大小、取代基
嵌段共聚物由于其自组装的特性引起了人们的普遍关注。近年来,科研工作者们通过受限的方法调控嵌段共聚物自组装结构的取向,获得了一系列具有潜在应用价值的新颖结构。本文采
当化石能源的逐渐减少与人们能源需求的增加之间的矛盾日益凸显,科学家们开发新型的绿色能源显得至关重要。锂离子电池作为一种洁净的新型能源,是主要依赖锂离子在正负电极之间往返穿梭进行工作的一种可循环电池,更因其具有绿色环保、快速充电、较高的能量密度等优势而备受研究者的瞩目。近年来商业碳材料常作为锂离子电池的传统负极材料,但因自身理论容量值较低而使锂离子电池的应用范围受到限制,如不能满足汽车动力能源的高能
学位
超分子主客体化学由于其潜在的应用前景,近年来受到越来越多的关注。在已知的客体分子中,偶氮苯及其衍生物对各类自然刺激具有响应性且同时伴随显著的结构变化,进一步可以控制其
本论文研究了金属氧化物半导体纳米材料NO2气体传感器,主要包括四部分的工作:⑴采用溶胶-凝胶法合成了In2O3纳米晶,首次研究了SiO2掺杂的In2O3纳米晶对NO2气体的气敏特性。所