论文部分内容阅读
OLED显示已经被广泛称誉为“梦幻显示器”。OLED具有众多让人们为之振奋的功能,例如彩色或白色自发光,可应用于平面和固态设备,快速的响应速度,轻薄的重量以及对灵活应用的适用性。因此,OLED不仅是一个有趣的科学领域,并且在市场中也具备巨大的应用前景。本论文就香豆素材料展开研究,致力于设计合成成本低、性能优良的电致发光客体材料,从而提高OLED的外量子效率以及功率效率。具体研究内容分为以下三个部分:第一部分,利用三种由多环芳烃(蒽,芘和二苯并萘)桥接的双香豆素染料(C-An-C、C-Py-C和C-DBC-C)作为发光材料,制备了有机电致发光器件。描述了三种化合物的化学结构,光物理性质,电化学性质以及有机电致发光器件的性能之间的关系。通过真空沉积法,成功制备了具有ITO/NPB(20 nm)/TBADN:Dopant(x wt%,30 nm)/TPBI(30nm)/Liq(2 nm)/Al(100 nm)结构的多层掺杂器件。所有器件均发出绿光,并具有较高的电致发光效率。其中,化合物C-An-C在7 wt%摻杂浓度下的发光器件性能最佳,发光亮度是7796 cd/m~2,最大电流效率为3.24 cd/A,最大功率效率为1.37 lm/W,最大外量子效率(EQE)为2.17%;化合物C-Py-C同样在7 wt%摻杂浓度下的发光器件性能最佳,发光亮度是10552 cd/m~2,最大电流效率为5.39 cd/A,最大功率效率为1.94 lm/W,最大外量子效率(EQE)为2.35%;化合物C-DBC-C在10 wt%掺杂浓度下观察到最大亮度为8433 cd/m~2,最大发光效率为5.19 cd/A,相应的功率效率为2.16 lm/W,最大外量子效率为2.13%。这三种化合物的器件性能相比,化合物C-Py-C的电致发光性能优于C-An-C和C-DBC-C,这与它们的光致发光量子产率的变化趋势是一致的。第二部分,合成了三种含有芳环并咪唑单元的新香豆素衍生物BI-C、PI-C和PyI-C,并将其成功应用于有机电致发光器件中。由于平面和刚性的聚芳环并咪唑骨架的π共轭结构,三个化合物BI-C、PI-C和PyI-C显示出良好的热稳定性和从蓝绿光(479 nm)到绿光(519 nm)的强发射,并且在氯仿溶液中具有94%、97%和98%的高光致发光量子效率。通过真空沉积法,成功制备了多层掺杂器件。化合物BI-C、PI-C和PyI-C作为掺杂材料制作OLED器件结构为:ITO/TAPC(30 nm)/CBP:Dopant(x wt%,35 nm)/TPBI(30nm)/Liq(2 nm)/Al(100 nm)。其中,化合物BI-C在6 wt%摻杂浓度下的发光器件性能最佳,发光亮度是984 cd/m~2,最大电流效率为2.86 cd/A,最大功率效率为0.91 lm/W,最大外量子效率(EQE)为1.59%;化合物PI-C在12 wt%摻杂浓度下的发光器件性能最佳,发光亮度是2421 cd/m~2,最大电流效率为6.07 cd/A,最大功率效率为4.77 lm/W,最大外量子效率(EQE)为2.78%;化合物PyI-C在12 wt%掺杂浓度下的发光器件性能最佳,最大亮度为2598 cd/m~2,最大发光效率为4.80 cd/A,相应的功率效率为1.35 lm/W,最大外量子效率为2.29%。第三部分,合成了含吩噻嗪或吩噁嗪结构单元的两种新香豆素衍生物PXZ-C和PTZ-C,并通过元素分析法、NMR核磁测试和MS质谱测试对其进行了表征,确定了其分子结构及分子质量。通过测试化合物PXZ-C和PTZ-C的紫外可见吸收光谱、不同溶液及薄膜状态时的光致发光光谱、循环伏安以及热重分析,系统地研究了它们的光物理和电化学性质以及热稳定性,综上结果显示化合物PXZ-C和PTZ-C具有良好的热稳定性。化合物PTZ-C在紫外光激发下发出弱的蓝绿光,而化合物PXZ-C发出弱的蓝光。