论文部分内容阅读
直线驱动技术具有广泛的应用前景。目前,直线电机驱动系统面临的一个主要难题就是效率问题,主要归结于两个方面的原因,一是常规铜材料构成的线圈在大电流下产生的欧姆热损耗;二是常规(线圈)磁体产生电磁场的有效利用问题。而超导材料以及超导应用技术的研究和发展为解决此类问题带来了曙光。首先,超导材料的强载流能力(比铜导线高2-3个数量级以上)可以轻易产生常规磁体难以达到的高场强,从而大幅提高动子电枢受到的电磁推力,而且可以降低整套系统的体积和重量;其次,超导材料的零电阻特性又可以有效降低在大电流情况下的欧姆热损耗。因此,超导技术与直线电机技术的结合必将对直线驱动技术的研究和发展带来新的动力。论文首先对直流型和脉冲电流型这两种超导直线同步驱动系统的工作原理进行了理论分析。在对超导直线驱动系统工作原理的理论分析基础上,论文完成了直流型超导直线同步驱动系统的设计研究。利用PSIM、Quartus Ⅱ、Ansoft (Maxwell与Simplorer)等软件对电路部分、测控部分以及电枢的运动过程分别进行了功能仿真与分析,仿真结果表明设计结果符合预期,验证了系统设计的可行性。根据系统的设计结果,选择适当的各分系统所需的硬件组成,构建了由两级超导定子线圈构成的直流型低温超导直线驱动系统。通过实验数据以及实验数据与理论设计值之间的比较,说明了设计的正确性以及利用超导技术实现直线驱动技术的可行性。同时,论文对脉冲电流型超导直线驱动系统的各部分组成进行了分析与仿真计算,仿真结果表明脉冲型超导直线驱动系统的设计主要在于如何实现超导定子线圈的电流波形以及定子线圈与电枢之间的互感梯度这两个因素的最佳匹配关系,从而实现系统的最佳运行性能。系统运行参数的改变,可以实现不同的直线驱动功能。比如不同的触发位置,即可以实现不同步长的步进功能,又可以实现不同运行速度的直线加速功能。由于脉冲电流型超导直线驱动系统在工作过程中,超导定子线圈将承受短暂的脉冲大电流冲击,而且此电流值一般都会高于超导线圈的临界电流值。超导定子线圈在承受此类过电流脉冲冲击情况下是否仍能正常工作(不被损坏)关系到脉冲型超导直线驱动系统的安全可靠性。因此论文最后对超导线圈在过电流情况下的工作安全性能进行了研究。通过实验可以看出,高温超导带材绕制而成的超导线圈,虽然其临界电流小于实验中所需承受的脉冲电流峰值,但是超导线圈可以承受约为其临界电流6倍的脉冲电流冲击而不遭到损坏,并且在超过临界电流的脉冲电流冲击下其失超区域能够快速恢复至超导状态。高温超导线圈的过电流冲击能力体现了脉冲型高温超导直线驱动技术的可行性。