论文部分内容阅读
天然气被认为21世纪最具潜力的清洁能源之一,据估算全球天然气水合物含有的有机碳总量大约是全球探明化石能源的两倍,所以天然气水合物是继页岩气、煤层气、致密气之后最受国内外关注的潜在能源。海底储存有大量水合物,水合物区的甲烷渗漏对大气甲烷浓度的贡献非常大,并且甲烷气体对紫外线的吸收远远高于二氧化碳。虽然国内外已经有很多海洋天然气水合物试采成功的案例,但是海洋水合物的开采仍然存在很多不可控因素。温度、压力和溶液中电解质的浓度可以直接影响到气体的逸散,天然气水合物相态平衡性质的研究对海洋水合物的稳定性起到至关重要的作用。海水中含有大量电解质,已证实电解质能有效抑制水合物的生成或加速水合物的分解,因此海洋天然气水合物的开采可以充分利用海水中含有的电解质。因此本文在国家重点研发计划课题“海洋水合物固态流化测试新技术”(No.2016YFC0304008)的支持下,开展了不同电解质对天然气水合物生成条件的影响研究,取得了以下主要成果与认识:(1)通过文献调研,分析和总结了前期学者研究的水合物生成实验装置的特征,建立了一套新的水合物生成实验装置,该装置通过中间活塞和压力控制阀可以有效地控制系统压力,并且利用恒温箱还可以精准的控制反应釜的温度,同时该装置实现了可视化和气体溶解度的测量。(2)水合物生成实验研究表明不同电解质对水合物的生成有不同程度的影响,在相同质量分数下MgCl2、NaCl和CaCl2的抑制性依次减弱,但是三种电解质的抑制性能相差很小。与单一电解质相比,相同质量分数的混合电解质对水合物生成的抑制性介于中间。(3)甲烷气体溶解度实验研究表明在水合物生长阶段,温度和压力保持不变时甲烷在电解质溶液中的溶解度几乎保持恒定。相同温度、压力环境下电解质的浓度越大甲烷气体溶解度越小,气体在液相中溶解度随着温度的增加而增大,压力变化对甲烷气体溶解度的影响很小,并且温度对甲烷在电解质溶液中溶解度的影响远远大于压力的影响。(4)通过引入水的活度系数以及与温度、电解质浓度和分子量相关的修正参数将Chen-Guo模型和PR模型相结合,建立了天然气在多种电解质溶液中生成水合物的预测模型,此方法预测范围更广、精度更高。