金属有机骨架衍生异质结构氧还原及析氧反应双功能催化剂的合成与性能研究

来源 :北京化工大学 | 被引量 : 0次 | 上传用户:shang66
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
如今,化石燃料的急剧消耗所带来的环境污染及能源危机日渐加重,而新能源的利用有助于解决上述问题。但新能源的不可逆性及间断性促使人们开发出新的能源存储系统。可充电金属—空气电池类的能源存储系统因为拥有价格低廉、能量密度较高等优点得到了研究人员的大量关注。析氧反应(OER)及氧还原反应(ORR)是此类储能系统中不可忽视的两个反应。然而,OER和ORR都是多电子传递过程,其反应机制复杂,从而导致其反应动力学缓慢。对于OER,目前商业上广泛采用的是钌基类贵金属催化剂;而铂基催化剂通常是ORR的商用催化剂。但此类贵金属基催化剂通常伴随着价格高、稳定性差及功能单一等问题。基于此,探索出一种在ORR及OER中兼具高效反应活性的非贵金属催化剂已迫在眉睫。近些年的研究表明,碳基材料因为兼具价格低廉及可调控空间大等优点在众多备选催化剂中脱颖而出,但该类催化剂在ORR及OER中通常表现出较低的活性。针对这一问题,本论文采用铁基金属有机框架(MOFs)为前驱体,同时通过构建催化剂的微观结构设计合成了两种不同异质结构的MOF衍生的碳基电催化剂。并通过物理及电化学表征方法对合成的两种材料进行了详细分析。具体内容如下:(1)在第一部分中,我们以铁基MOF(MIL-88A)为前驱体,先是在室温条件下在其外表面包覆一层介孔结构,然后通过浸渍法向其中引入镍元素,最后在氮气氛围下高温热解得到Ni掺杂及介孔碳壳包覆的Fe/Fe3C实心框架(Fe@C20Ni)异质结构催化剂。外部包覆的介孔碳壳增大了样品的比表面积,从而暴露出更多的活性位点,这能够有效加快催化反应中电荷的转运及质量的传输,进而使催化活性得到提升。同时,镍、铁元素的协同作用进一步提升了样品的电催化活性。在碱性环境中,Fe@C20Ni拥有优良的ORR半波电位(0.804 V)以及较小的OER过电位(383 m V)。(2)在第二部分中,我们同样以MIL-88A为前驱体,经水热反应先是被转化为外部同时包覆有ZIF-8及毛刺状结构的中空结构,在外加氮源(三聚氰胺)的作用下,最终在氢气氛围下退火生成了碳纳米管(CNTs)锚定在中空Fe/Fe3C框架上(FCNTs)的异质结构催化剂。这种多孔的中空异质结构赋予了样品大的比表面积及更多的反应位点,促进了催化反应中电荷的转运及质量的传输。此外,原位生长的CNTs进一步提高了样品的导电性,从而使得样品的催化活性有了进一步的提升。碱性电解液中,800 oC下得到的催化剂拥有最佳的ORR催化性能(半波电位为0.859 V)以及较小的OER过电位(375 m V),显示了其双功能催化性能的潜力。
其他文献
以石墨为负极的锂离子电池由于负极的理论比容量(372 m Ah g-1)较低,无法满足新兴领域对高能量密度储能器件的需求。金属锂具有极高理论比容量(3860 m Ah g-1)和最低氧化还原电位(-3.04 V vs.标准氢电极),被视为最有潜力的负极材料之一。然而,在循环过程中,固体电解质界面(SEI)层不稳定,枝晶生长不可控,巨大的体积变化等严重限制了锂金属负极的实际应用。SEI层在锂均匀沉积
学位
自2019年12月以来,为了对抗新型冠状病毒肺炎疫情(COVID-19),国内外产生了大量废弃一次性医用口罩。口罩在自然界中难以降解,造成了很大的环境污染,对废弃口罩进行有效回收处理在全世界范围引起了广泛关注。口罩由无纺布、耳带、鼻梁条三部分组成,其中无纺布的占比最大,其主要成分是聚丙烯。热裂解是聚丙烯转化为小分子燃料油的常用方法,对热裂解挥发物进行催化裂解可以提高气体产物收率,降低液体产物收率,
学位
芳香族挥发性有机化合物作为VOCs最主要的分支,严重影响了人类的生产生活,对其处理迫在眉睫。离子液体(ILs)低饱和蒸气压,高热稳定性,结构可设计性等自身良好特性及吸收捕集过程“零污染零排放零损失”等优势而被广泛应用为吸收剂。本文选取甲苯为代表,以ILs作为吸收剂来进行脱除甲苯的机理以及吸收过程优化的研究。具体研究内容如下:(1)将预测型热力学模型COSMO-RS模型应用到离子液体的筛选工作中,从
学位
烃源岩作为石油或天然气的母源,其高效开发利用十分重要。烃源岩热模拟是研究烃源岩演化过程常用的方法之一,但是烃源岩在高温短时间条件下的热模拟与低温长时间下的地质演化间存在差异。本研究以海相烃源岩为研究对象,从烃源岩共价键结构演变、烃源岩自由基浓度、热模拟油气产物组成及其与键合结构的关系等多个角度分析了烃源岩热模拟过程,并且比较了烃源岩地质演化过程和热模拟过程的差异。主要结论如下:(1)热模拟和地质演
学位
在碳达峰,碳中和的背景下,燃料电池受到了广泛的关注,但其阴极侧的氧还原反应(ORR)动力学缓慢,依赖于Pt基贵金属催化剂,严重遏制了其广泛应用。因此,开发低成本、高活性的氧还原催化剂是燃料电池和金属空气电池领域的研究重点。单原子Fe催化剂可以催化ORR,而且具有优异的抗一氧化碳、氮化物、硫化物中毒能力,因此被认为是最有希望替代Pt/C的氧还原催化剂之一。但是在活性方面单原子Fe催化剂与Pt基催化剂
学位
日益增长的能源需求要求发展先进的能量存储与转换装置,金属-空气电池等新型能源器件因其能量转换效率高、环境友好的特点具有良好的商业化前景。然而,这些装置中发生在氧电极上的氧还原反应(ORR)和氧析出反应(OER)动力学迟缓,需要催化剂加速反应动力学,而贵金属催化剂的高成本和单功能性严重限制了相关器件的能效,因此开发高性能的非贵金属双功能ORR和OER电催化剂成为近年来的研究热点。金属有机框架(MOF
学位
环境污染问题和日益增长的能源需求,促进了可再生能源的探索和发展。锂离子电池在可充电电池市场中占据主导地位,然而,锂资源贫瘠、锂离子电池价格高、有机电解质有毒和锂电池安全隐患等问题严重阻碍了它们进一步的大规模储能应用。可充电水系锌离子电池有希望成为锂电池的替代品。金属锌因其具有820 m Ah g-1的高理论质量比容量和5855 m Ah cm-3的体积比容量、低电化学电位(-0.76 V vs.S
学位
煤炭是我国火力发电的主要能源,其燃烧时会产生二氧化硫,对生态系统以及人类的生产活动造成巨大的影响,因此,需要利用脱硫技术将二氧化硫进行捕集。氨法脱硫作为一种新兴的捕集二氧化硫的技术,具备脱硫效率高的特点。该流程的产物中包括亚硫酸铵,如果能将其氧化硫酸铵,当作化肥使用,则能产生经济效益。传统的亚硫酸铵的氧化过程是在氧化塔中利用空气氧化亚硫酸铵,但由于氧化塔传质效率较低,且氧气在水中的溶解度小,氧气在
学位
相平衡是化工热力学研究的重要组成部分,任何基于热力学分离的工艺开发和优化都离不开相平衡的原始数据。固-液相平衡初步研究了溶质在溶剂中的溶解度。固-液相平衡的研究是结晶工艺优化的前提,不仅提供了必要的相平衡数据,也为结晶器设计提供了关键的基础要素。本文围绕4-苯基苯甲酸、邻苯甲酰苯甲酸和2-羟基-4-甲氧基二苯甲酮三种有机物的固-液相平衡展开研究,主要的研究内容如下:(1)通过重量分析法测定在常压和
学位
形状记忆聚合物(SMPs)是如今最有发展前景的智能材料之一,其在生物医学、航空航天、4D打印等领域应用广泛。SMPs能够通过施加热、电流、磁场、光照、水、p H等刺激,从临时形状回复到原始形状。同时,SMPs还具有诸多优点,如相对简单的制造工艺、高柔性、重量轻等,但是SMPs在导电性和机械性能等方面还存在明显的缺陷,通常通过在聚合物基体中引入填料解决,其中纳米填料对SMPs基体的性能提升更为明显。
学位