新型功能化稠环化合物的合成及应用

来源 :长春理工大学 | 被引量 : 0次 | 上传用户:yx5813399
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
研究发现稠环化合物因其独特的光学性质,可以有效地调控荧光物质的荧光发射,改善其强度和光稳定性。尤其是BOPHY衍生物和花菁衍生物,因为其优异的可调光学,光物理性质、氧化还原性质及近红外性质,被广泛应用于生物分析、检测、成像等多个领域。本文制备了BOPHY-NO2和Cy-Si-ben两种新型探针,探究其检测机理,并优化了检测条件,将其应用于半胱氨酸(Cys)和F-的检测。1、设计并合成了新型的BOPHY-NO2探针,基于迈克尔加成反应机理,构建了一种检测半胱氨酸的新检测方法。当向探针溶液中加入半胱氨酸时,BOPHY-NO2的双键断裂,形成荧光“turn on”的现象。实验考察了pH值,反应时间,有机相含量等不同因素。根据BOPHY-NO2荧光强度的变化来检测Cys,探针荧光强度可增强40倍。实验检测时间较短,可在8min内完成。此方法具有很高的灵敏度和选择性,其检测限为0.2μmol/L。探针同时成功的应用于人血清中半胱氨酸的检测,得到95%的回收率。2、设计并合成了一种新型的水溶性花菁探针Cy-Si-ben。当加入F-后,F-进攻Si-O键,使其断裂。再通过质子化,使其荧光恢复,形成荧光“turn on”的现象。实验条件最终设为60℃,5mmol/L Mops缓冲液-DMSO(pH=7.4,VDMSO%=70%)溶液。根据Cy-Si-ben荧光强度的变化来检测F-,探针荧光强度的变化与加入F-的量成正相关,且荧光强度变化为80倍。此方法具有良好的灵敏度和选择性,其检测限为0.2μmol/L。利用此方法对牙膏中的F-进行了检测,与所标定的F-含量基本一致。
其他文献
陆地上的森林生态系统对于改善现实生态环境、维护全球碳平衡、保护生物多样性、保持水土、涵养水源、防风固沙等起着重要作用。本文采用志丹县1980年-2015年土地利用数据、1
基金经理是否具有投资管理能力,如何衡量其投资管理能力一直是学界与业界的关注热点。已有文献中学者们基于资本资产定价模型(CAPM)、Fama-French模型等提出了多种以超额收益率为基金业绩评价标准的理论模型,还从择时和选股等方面将基金经理的投资管理能力进行分解。但国内外学者基于以上理论对基金经理能力是否存在所展开的实证研究尚未形成统一的观点,对此Berk和van Binsbergen(2015)
大气污染问题已成为各个国家面临的严峻挑战之一。CO是排放量最大的气体污染物之一,给生态环境和人类健康带来严重威胁。催化氧化法是实现CO有效去除的重要手段。二氧化铈(CeO_2)作为一种重要的稀土氧化物材料,己被广泛地应用在CO催化氧化领域。本论文以铈基复合微纳材料的可控制备及高效的CO催化氧化为研究主线,从金属与载体之间的强相互作用力、活性元素组成的调控、催化活性和抗烧结能力等方面展开了一系列的研
目的:观察鞣花酸(ellagic acid,EA)对IPEC-J2细胞增殖、紧密连接、细胞周期、细胞凋亡相关基因的影响,并研究其中可能的作用机制,为鞣花酸的应用提供实验基础。方法:采用MTT
高温超导材料由于其高载流能力和低功耗的性能,可广泛应用于国防、交通、医疗等领域。然而,超导体在进行通电工作时会受到外部磁场的影响,导致其交流损耗和临界电流发生变化。三种新型方形线材的结构为方形,可以有效地降低外界磁场对超导带材特性的影响,因此本文针对三种新型方形线材进行通电特性研究。首先,对三种新型方形线材进行基本特性研究。分别从DCV-I特性和弯曲直径与轴向拉力两方面进行了实验测量。其次,对三种
本论文分为四个章节:第一个章节,主要介绍近年来国内外化学工作者利用手性磷酸作为催化剂,催化各种反应合成吲哚衍生物的概况。同时,介绍本论文的选题依据和背景、主要的研究
随着信息科技的飞速发展,人们对微型化和高度集成化器件的要求越来越高,在纳米尺寸的层面上实现光信息传输与处理成为科学研究的一个重要课题。表面等离激元的问世为研究者们敞开了一扇全新的大门。作为量子信息的理想新载体,表面等离激元不仅能够突破衍射极限而且还具有很强的局域场,为探索波导与各种共振器之间的强相互作用铺平了道路,同时其在高灵敏生物检测、传感和新型光源等领域也获得了广泛的应用。本文主要开展如下研究
雷竹(Phyllostachys violascens)是高效益笋用竹种,其笋芽的萌发规律与一些具内休眠现象的植物的芽类似。该休眠状态的解除需要一定的低温处理,无法通过简单地改变环境条件使
电化学传感器具有灵敏度高、检测限低、仪器设备便携、经济和易于微型化等优点,吸引了广大分析科研工作者的兴趣。近年来纳米材料科学迅猛发展,纳米材料已被广泛应用于电化学
信托制度建立,是人类社会法律制度创新的飞跃性成果。信托起源于英国,英国著名的法律史学家和衡平法律师梅特兰曾指出,“如果有人要问英国人在法学领域取得的最伟大、最独特的成就是什么,那就是历经数百年发展起来的信托理念,我相信再也没有比这更好的答案了”。中世纪的英国社会,土地作为百姓的主要生活财产,奉行严格的长子继承制度,土地主为了规避种种限制,将土地委托给受托人,由受托人成为新的所有权人,保障其家人的权