费米包方法在Gross-Neveu模型上的研究

来源 :上海交通大学 | 被引量 : 0次 | 上传用户:b110701007
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文主要研究在非零温度、有限密度下的2+1维Gross-Neveu(GN)模型。首先,介绍2+1维GN模型的连续形式和交错(staggered)费米子的离散格式。其次,用费米包方法(fermion bag approach)计算该模型的费米子密度(fermion density)和手性凝聚(chiral condensate),分析它们如何依赖化学势μ、费米子味数N_f、耦合强度g和费米子质量m,并将结果和复朗之万(Langevin)动力学方法进行比较。复朗之万动力学方法在每步迭代时都要求解费米子矩阵的逆矩阵,计算量非常大。费米包方法在每步蒙特卡洛更新时使用行列式算法,从而减少计算量。当费米子质量m很小时,费米子矩阵逆矩阵的条件数很大,求解费米子矩阵的逆变得很困难,复朗之万动力学方法的计算效率会变得很慢。费米包方法在计算费米子强相互作用时拥有很高的计算效率。结果表明,费米子味数N_f的影响较小;耦合强度g越大,费米子密度越小,手性凝聚随化学势增大而更快衰减;费米子质量m越小,费米子密度越大并且趋向稳定,手性凝聚急剧减小。与复朗之万动力学方法相比,费米包方法得到的费米子密度略大,手性凝聚略小。
其他文献
2012年欧洲核子中心(CERN)宣布在大型强子对撞机(LHC)上发现了希格斯玻色子(Higgs Boson)。随后,国际高能物理学界提出了利用轻子对撞机作为希格斯粒子工厂的方案:这些方案包括中国科学家提出的正负环形电子对撞机(CEPC),欧洲核子研究中心提出的未来环形对撞机(FCC-ee),以及日本主导的国际直线对撞机(ILC)等。基于希格斯粒子强子衰变末态高精度能量分辨的要求,传统的强子量能器
聚乙二醇(PEGs)作为生物医学研究中最常用的聚合物,被广泛用于改善药物、治疗性蛋白质及脂质体的理化和药代性质,提高生物利用度、降低免疫原性及减少给药频率等。单分散聚乙
海洋立管服役中,当海流、波浪流经立管时会发生涡激振动现象,严重影响立管的使用寿命和海洋油气开发的安全。为了抑制海洋立管的涡激振动,通常采用在立管外部附属抑制装置的
自古以来,我们中国就是“漆器大国”,世界上最早的漆器来自中国,同时出土的漆器文物也是世界上最多的[1]。其中,楚漆器的出土展现了我国高超的漆器工艺、神秘的艺术风格,将我国漆器发展推向高潮。国家经济稳步向前,人民生活水平大幅提升,广大人民群众从物质的要求上升到精神文化的追求,同时,我国确认到2025年中华优秀传统文化传承发展体系基本形成的总体目标,各方面协同推进并取得重要成果。本文由绪论、现代衍生产
页岩气作为一种可代替煤清洁能源,在我国广泛分布。合理开发和使用页岩气对于缓解我国能源短缺问题、改善能源使用结构、促进工业水平发展、改善民生、保护环境均有积极的意义。而页岩气作为一种非常规油气藏,经大量学者研究表明,其地层压力和其产能存在较大关系,高压往往意味着高产,准确的压力预测可以为后续页岩地层井位部署、资源量评估提供参考。此外,钻前压力预测可以有效防止井喷等钻井事故。人们对压力预测的方法研究起
目的:探讨抑郁症患者的阳虚体质与抑郁症的相关性;研究附子汤联合盐酸舍曲林治疗阳虚体质抑郁症患者的临床疗效。方法:本研究分为两部分,研究时间从2018年09月至2019年10月。收集于天津市中医药研究院附属医院心身疾病科门诊就诊的阳虚体质抑郁症患者,年龄范围:18-65岁。所有入组患者均于就诊当天(0周)填写HAMD-24(Hamilton Depression Scale-24,汉密尔顿抑郁量表)
由于对清洁能源需求的日益增长,广大研究工作者密切关注高效的清洁能源转化技术。特别是,氢能作为最清洁的能源之一,在燃烧过程中无污染物排放,已经受到全球的广泛关注。电解
氧化偶联是有机化学中一种简洁高效的绿色合成方法,近年来氧化偶联反应逐渐成为化学合成中“热门”的研究课题,被广泛应用于工业领域,从而为医药品、农用化学品和功能性材料提供丰富的中间体资源。其中,使用过渡金属催化的氧化偶联反应来直接构建碳-碳键(C-C)和碳-杂键(C-X)已经成为有机合成的重要手段。过渡金属催化的氧化偶联反应能大大扩展有机合成的范围,极大的促进了有机合成的发展与应用。有机金属化学经过过
近十几年来,荧光探针分别在生命科学及材料科学等许多领域发挥着重要的作用,已广泛应用于分子及细胞,甚至于生物活体的研究中。硫化氢(H2S)是继NO和CO后的第三种能够在生命体内
循环流化床粉煤灰是由燃煤在循环流化床锅炉内燃烧并掺入石灰石脱硫后的产物。2015年中国粉煤灰排放量突破6.2亿吨,产量巨大,大量堆存的粉煤灰占用大面积土地资源,破坏附近的生态环境,污染大气及地下水资源,严重危害到人类及动植物的生存。目前针对循环流化床粉煤灰的综合利用仍以水泥、混凝土及建材生产等低附加值利用为主,近年来也开展了大量高附加值综合应用的研究,主要是对其中各类有价值的金属元素,如镓、锗、铁