基于多元线性回归和反向传播神经网络的OSAHS的预测及分类

来源 :天津大学 | 被引量 : 0次 | 上传用户:flyerhan
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
阻塞性睡眠呼吸暂停低通气综合征(obstructive sleep apnea hypopnea syndrome,OSAHS)是一种高度流行的慢性睡眠呼吸紊乱疾病。其具有高患病率和多并发症等特征,会直接影响患者的生活质量和寿命,因此对OSAHS的准确诊断尤为重要。目前,多导睡眠图(polysomnography,PSG)是临床中诊断OSAHS的金标准,但由于其昂贵耗时、专业性强、且存在首夜效应等原因导致难以普及到基层医院。在临床中,医生也常采用主客观问卷类评估量表方法进行OSAHS初筛,但此类方法诊断的敏感度和特异度都不够高,参考价值有限。针对上述问题,本文提出了基于脉搏夜间血氧饱和度(oxygen saturation,Sp O2)监测的OSAHS诊断方法,旨在提高诊断的敏感性和特异性,从而缓解当下PSG资源紧张和睡眠医师工作量大的压力。本文基于MATLAB软件设计开发了针对OSAHS研究的数据处理工具,旨在满足睡眠医师在科研时对OSAHS患者的数据进行处理和分析需求,同时也是本研究中提取Sp O2指标的工具。本文提取了13个可能与OSAHS的诊断指标——呼吸暂停低通气指数(Apnea Hypopnea Index,AHI)相关的Sp O2指标,并与AHI做相关性分析。最终筛选了11个Sp O2指标,加入患者的性别、年龄和身体质量共14个指标作为OSAHS严重程度的全部特征。基于以上特征,本文采用多元线性回归模型来预测AHI。实验结果表明,此方法预测结果与PSG监测AHI值的拟合优度r~2=0.848(p<0.01)。中度OSAHS和重度OSAHS诊断的敏感度和特异度分别为74.48%和87.34%、94.18%和89.49%。本文又采用了具有非线性拟合能力的反向传播神经网络模型进行实验。结果表明,基于反向传播神经网络的AHI预测方法获得了高预测性能,其模型拟合优度r~2=0.889(p<0.01),诊断结果相对于多元线性回归模型有一定的提高。最后,本文又尝试了采用反向传播神经网络模型直接进行OSAHS严重程度分类的实验。预测结果所有组别的特异度和阴性预测率均在90%左右。其中非OSAHS组诊断敏感度为88.46%,重度OSAHS组诊断敏感度为94.74%。本研究为OSAHS的诊断提供了一种新的、可靠的筛选工具,对临床OSAHS的预测和分类有重要意义。
其他文献
随着太赫兹技术的发展,对太赫兹功能器件的需求越来越多样化。针对功能器件的材料选择及制备这一核心问题,本文着重进行了讨论。由于纯金属材料对于太赫兹波的反射系数很高,因此在通常情况下,纯金属材料器件只作为太赫兹波反射材料使用。而金属微纳颗粒材料对太赫兹波有散射作用,能够有效透过太赫兹波,采用金属微纳颗粒材料给用金属材料构建太赫兹透射式器件提供了一种新的可行性方法。本文主要是利用金属微纳颗粒在太赫兹波段
学位
脑卒中是世界致残率第一、严重危害人类生命健康的常见高发病,探索其新型康复治疗方法已成为世界范围,尤其是我国的关注焦点。运动想象(Motor Imagery,MI)与作业疗法(Occupational Therapy,OT)作为运动功能训练手段已广泛用于卒中患者的临床康复治疗。其中,MI疗法简单易行,可充分调动患者主观能动性,但其形式单一,难以完全匹配日常活动训练需求;OT范式简单,贴合日常生活,可
学位
脑-机接口(Brain-Computer Interface,BCI)利用工程的技术手段打造了一条不依赖于外周神经和肌肉系统的信息传输通道,从而实现人脑思维信息到机器操作指令的转换。其中,视觉反应式BCI是目前信息传输速率最高的一类BCI,它通过外界视觉刺激所引起的大脑诱发电位来解码思维意识。但是,对于某些运动功能严重受损的患者(如晚期的渐冻症患者)而言,其移动视线的能力受到极大的限制,因此难以有
学位
太赫兹波凭借在电磁波谱中的特殊位置以及独特的性质,引起了研究人员的广泛关注。由于自然材料大多对太赫兹波没有明显响应,太赫兹波的操控手段相对匮乏。超表面可实现对电磁波偏振、相位、振幅等物理属性的有效操控,能有效弥补太赫兹功能器件的空白。相比传统的静态超表面,主动控制超表面能够实现电磁波的动态操控,逐渐成为研究热点,本论文针对其中的主动式波前控制超表面进行研究。之前的相关超表面通过引入可调控的功能材料
学位
脑-机接口(Brain computer interfaces,BCI)系统通过分析脑电图将人的神经生理活动转化为指令进行输出。为满足实际生活的需要,BCI系统必须具有响应速度快、操作简便以及输出稳定等特点。基于稳态视觉诱发电位(SteadyState Visual Evoked Potentials,SSVEP)的BCI系统由于具有这些优点而受到广泛的关注。但SSVEP-BCI也存在视觉刺激强度
学位
光遗传学是一种用光对神经元进行操控的技术,具有高的时间和空间分辨率,已经被用于大脑以及神经系统相关疾病的研究。基于光纤的光刺激与神经元活动监测器件发展最早也最成熟,但是也存在着一些问题,例如与光源的有线连接方式会影响实验动物的正常活动,传统刚性光纤的机械性能与生物组织相差悬殊,光纤表面弯曲的特点使其难以与外部传感元件进行高度集成等。为了解决这些问题,本文研制了一种植入式的多通道柔性光电纤维器件,可
学位
针对癌症的早期诊断和病灶检测方面,常规的医学检查手段存在准确度低,二次损伤等缺点。太赫兹波具有光子能量低,丰富的指纹谱等特性,被广泛应用于病理组织的检测研究。因此,我们基于太赫兹时域光谱和太赫兹-拉曼光谱对脑缺血病理样本进行光谱检测和识别,以及基于焦平面成像的脑胶质瘤组织的成像研究。主要内容及创新点如下:1.概述太赫兹波及其技术的发展现状,重点介绍太赫兹时域光谱技术和焦平面阵列成像技术的研究现状,
学位
近年来,随着数字技术的快速发展,三维重建技术在建筑物质量监测和测量方面得到广泛的应用,其中应用最为广泛的是双目立体视觉,其技术核心是立体匹配,传统匹配方法主要通过特征点寻找左右图像对应点,并计算两点的视差,但对于混凝土建筑物健康监测等应用对象,混凝土表面图像大部分像素点具有相似的灰度值,传统匹配算法很难准确地找到对应点,因此,需要研究更加有效的立体匹配方法。基于卷积神经网络的立体匹配算法是近年来发
学位
工作于1.5μm光谱范围的高功率铒镱共掺光纤激光器(EYDFL)由于具有人眼安全、大气和电信光纤中的传输损耗低等优点,在空间通信、激光雷达(Li DAR)、测距和遥感等系统中有重要的应用价值。但EYDFL的输出功率却长期以来远远落后于其他波段的光纤激光器。现有的研究表明,镱波段的放大自发辐射(Yb-ASE)以及激光器中的热效应是阻碍EYDFL功率提升的主要原因。为了实现高效率高功率EYDFL,本文
学位
无标记细胞识别与分选是细胞学研究。的重要方向。非染色的方法能够大幅度减少细胞的损伤,为后续细胞的再利用提供可能。当前实验室已成功研发基于衍射成像的无标记流式细胞成像仪,并验证了衍射像在细胞识别中具有良好的特异性。但该系统对细胞的分析均在图像采集完成后由计算机统一处理,是一种离线的分析方法。细胞分选则需要实时的细胞数据分析,而普通计算机无法达到实时分析和控制分选的要求,因此本文提出了基于现场可编程门
学位