基于小角X射线散射的纳米硫化锌生长机理研究

来源 :天津工业大学 | 被引量 : 2次 | 上传用户:zshihao
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
小角X射线散射(SAXS)现已发展成为研究亚微观结构和形态特征的一种技术和手段,被广泛应用于聚合物、生物大分子、凝聚态物理和材料科学等学科。小角度的X射线散射能够捕捉物质内部纳米尺度(1-100)的电子密度不均匀区,并将其结构信息反映在二维散射图样中。因此,可以通过求解物质的SAXS谱,得出其相关结构信息。  硫化锌(ZnS)作为典型的Ⅱ-Ⅵ族宽带隙半导体材料,是目前电致发光的最佳基质之一,在光电转换、非线性光学器件、平面显示器等领域都有广泛应用。ZnS纳米粒子的长大方式及生长速率等基本问题是影响工业上“可控”批量生产纳米ZnS的重要因素,因此研究硫化锌纳米粒子的生长方式至关重要。SAXS可以追踪ZnS纳米粒子粒径随时间演化的关系,目前已被公认为是表征纳米材料结构信息的有效手段。  本文简要介绍了同步辐射小角X射线散射的基本理论以及实验方法,并利用SAXS方法,研究了ZnS纳米粒子在溶液中的生长过程,分析颗粒形状、尺寸及分布随时间变化的过程,从而获得其生长方式。主要内容有:  1、结合小角X射线散射技术特点和北京同步辐射装置1W2A小角站光源参数,设计了一款用于ZnS纳米粒子溶液生长的样品槽。  2、将逐级切线法应用到SAXS数据处理中。此方法是Guinier定律的实际应用,因此对于任意形状的纳米颗粒体系,逐级切线法都可以得到其回转半径的分布函数。  3、利用自行设计的样品槽结合SAXS技术研究了ZnS纳米颗粒的尺寸随反应物浓度以及时间的变化。结合紫外可见吸收光谱(UV-vis)、动态光散射(DLS)和透射电子显微镜(TEM)实验,可以得到不同反应物浓度下ZnS纳米颗粒的尺寸,进而得出ZnS纳米粒子随时间变化的过程是以Ostwald熟化为主,伴随一定时间的定向附着生长。
其他文献
随着我国经济和通信技术的发展,无线电通信和测量技术在无线局域网、卫星通信、移动通信、地质勘探、深空探测、定位、声呐、雷达、电子战等各个领域都得到了越来越广泛的应用
随着科技的发展,等离子体逐渐应用于多种场合,在不同的领域发挥着巨大作用。为了能更好的掌控和运用等离子体,研究它的物理性质和基本参数尤其重要。等离子体诊断就是通过各
神经活性甾体激素对大鼠前额叶皮层锥体细胞动作电位的作用和机制神经活性活性甾体激素在前额叶皮层具有重要作用,与情绪、认知等高级脑功能活动及精神疾病有密切关系。已往的
近年来,随着科技的不断进步,智能手机和平板电脑等便携式电子产品逐渐成为人们日常生活中不可或缺的一部分。而电源作为此类电子产品的动力中枢,其续航能力直接决定着电子产品的使用寿命。要提高电子产品的性能,节约能源,关键是要解决电源的性能问题。电源在目前主要分为线性电源和开关电源,由于开关电源具有功耗小、变换效率高等优良性能,加上生产成本低,已经逐渐取代了变换效率低、不利于节能环保的线性电源,并在电子行业
近年来,现代电子科技的进步以及人们对消费类电子产品的热切需求,不断高推动着智能手机、平板电脑、笔记本电脑等便携式电子产品快速发展。电源作为电子产品正常工作的最基本
对于模拟电路,芯片一经流片,电路的相关特性就已确定而无法更改。然而,受到工艺环境等非理想因素影响,一些参数并不符合设计预期,导致流片后芯片的精度及性能与预期相差甚远。为了弥补电路设计期望与芯片最终性能之间的差距,近年来,针对大规模集成电路的修调技术不断得到发展。与此同时,开关电源芯片也正朝着高性能、高精度、小体积以及低成本的方向发展,因此采用合适的修调手段对电源芯片进行修调十分必要。本论文针对一款
单宁酸作为植物单宁的重要组分,广泛存在于谷物、水果和蔬菜中,是一类天然的抗氧化剂,对人体具有多种保健功能,如抗衰老,抗癌以及降低血脂、血糖、血压等。单宁酸的酚羟基结构决定
嗜盐古菌是一类生活在高盐环境中的古细菌。氯视紫红质蛋白(halorhodopsin,HR)是其细胞膜上的蛋白质,它具有典型的七次跨膜结构和光驱动阴离子泵功能,对它的研究具有重要的理论
内蒙古草原是我国分布最广的草原,是我国北方地区一道重要的绿色屏障,对京、津周边及整个华北地区生态环境保护起着十分重要的作用。近半个世纪以来,由于人口的迅猛增长和经济、
太赫兹波是频率从O.ITHz—IOTHz内的电磁辐射,目前太赫兹技术的发展也显示了其优越的应用前景。在太赫兹辐射源的研究中,大功率、便携式、小型化的太赫兹辐射源对太赫兹技术