温拌阻燃钢渣沥青混凝土制备与性能研究

来源 :武汉理工大学 | 被引量 : 0次 | 上传用户:o70078
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着我国公路建设向中西部山区发展,隧道建设发展迅猛,隧道里程逐年增加。我国隧道路面多采用沥青混凝土,其热拌热铺时VOC释放量高,且沥青易燃;同时沥青混凝土中95%为集料,而我国优质天然集料资源日益短缺,亟需寻找替代资源。钢渣作为一种工业副产品,其抗滑耐磨以及与沥青黏附性好等特点赋予了其具有替代天然集料的优势。为此,本文拟开展温拌阻燃钢渣沥青混凝土研究,以期为隧道路面建设提供技术支撑。基于以上背景,本文通过粘度、极限氧指数(LOI)两个性能指标确定了Sasobit温拌剂与FRMAXTM阻燃剂的最佳用量,制备了温拌沥青、阻燃沥青与温拌阻燃沥青,并对比研究了不同沥青的基本性能。设计了AC-13、SMA-13两种级配类型的混合料,采用散料汽油燃烧法与马歇尔喷枪点燃法研究了级配类型(AC-13与SMA-13)、钢渣集料掺配比例(0%、50%、100%)对沥青混合料阻燃性能的影响。结合温拌阻燃沥青的制备与钢渣掺配方式,制备了温拌阻燃钢渣沥青混凝土,并与天然集料对比研究了其温拌效果、路用性能、阻燃性能的差异。结果表明:Sasobit温拌剂与FRMAXTM阻燃剂的最佳掺量分别为沥青质量的2%和8%,所制备的温拌阻燃沥青具有较好的降粘阻燃效果。相比于SBS沥青,温拌阻燃沥青的高温性能有所提高。燃烧实验结果表明AC-13沥青混合料的阻燃性能优于SMA-13沥青混合料,100%钢渣掺配比例沥青混合料的阻燃性能优于0%与50%钢渣掺配比例的沥青混合料。所制备的温拌阻燃钢渣沥青混凝土为100%钢渣掺配比例的AC-13沥青混合料,其性能优良,其高温性能、水稳性能、抗滑性能、阻燃性能均高于使用玄武岩制备的温拌阻燃沥青混凝土,是隧道中性能优良的路面材料。
其他文献
水泥行业碳排放量日益增加,主要归因于作为水泥行业基础原料的普通硅酸盐水泥高钙组分的设计。因此降低水泥熟料中C3S含量、增加C2S含量是降低水泥行业碳排放量的有效途径之一;同时利用γ-C2S自粉化特性制备以其为主要矿物组分的熟料,能够进一步减少熟料的粉磨能耗。本文利用工业钙质与硅质原料,通过设计生料配合比与煅烧制度制备出γ-C2S熟料,并研究其碳化性能,揭示了Fe2O3和Al2O3等杂质对γ-C2S
学位
目前,商业化钠离子电池大多数采用液态电解液,其中的有机溶剂可以提供一个适宜的环境便于钠离子的运输,但由于有机液体溶液的可燃性,会导致钠离子电池存在安全隐患。相比于有机液体电解质,固态电解质通常在热稳定性、安全性和电化学耐久性方面具有多重优势,展现出极大的应用前景。但无论是陶瓷固态电解质还是聚合物电解质都面临着严重的界面问题,因此,针对如今钠离子固态电解质的低离子电导率、高界面阻抗以及繁琐的制备工艺
学位
瓷绝缘子作为高压输电线路不可或缺的重要组成部分之一,主要起着支撑与绝缘的作用。随着国内特高压建设的不断发展,高架线路电压等级不断提高,输电线路的延长以及冰冻、雨水、高温等恶劣气候条件对瓷绝缘子的影响,对瓷绝缘子的机械性能和绝缘性能提出了更高要求。水泥胶合剂作为瓷绝缘子的重要组成部分之一,目前国内的相关研究存在以下几个问题:(1)绝大部分工厂采用硅酸盐水泥作为瓷绝缘子用水泥胶合剂,但其力学强度已无法
学位
锂离子电池(LIBs)自1991年取得商业化以来,在电子产品、电动汽车以及大规模存储等领域中取得了广泛的应用。但锂离子电池面临着日益严峻的锂资源储量贫瘠、矿产分布不均、生产成本不断上升等关键问题,无法满足未来大规模储能的需求。相比之下,钠离子电池(SIBs)凭借Na资源丰富的矿产储量和易获得的原材料逐渐受到研究者的关注。此外,钠和锂元素具有十分相似的化学性质。在未来的储能领域中,钠离子电池有望替代
学位
锂硫电池(Li-S)作为最具前景的二次电池之一,具有超高理论比容量(1675m Ah g-1)、价格低廉、绿色无污染等优点。但锂硫电池存在正极材料电导率低、体积膨胀高(~80%)以及多硫化物容易溶解在电解液中并导致穿梭效应等缺陷,使得电池容量衰减快,循环性能差。因此锂硫电池的发展及应用被严重限制。本文通过将中空介孔碳分别与硫化锡纳米片和硒化钼纳米片复合来负载单质硫作为锂硫电池正极,来增强正极的导电
学位
随着全球变暖的迅速加剧,可再生能源和绿色能源的短缺严重影响了全球经济。能源方面的累积不足,已引起研究人员的高度关注。探索太阳能电池、超级电容器和锂离子电池等储能设备用以储存水力发电、风力发电等产生的能量。在众多的储能设备中,超级电容器又称为电化学电容器,由于其显著的更长的循环寿命、更高的能量和功率密度、更快的氧化还原反应(充放电)、环境友好性和低成本效益,超级电容器在实际应用中具有极大的灵活性。超
学位
压电材料是一种可将机械能与电能相互转换的智能材料。其中,压电陶瓷因具有较高的压电性能,在传感、医学超声成像与水下探测等高技术领域得到了广泛应用。传统压电陶瓷多含有有毒的铅元素,对人类与自然环境有不良影响,近年来,钛酸钡(Barium titanate,Ba Ti O3)等无铅压电陶瓷受到广泛关注。随着高技术领域对压电材料需求的提升,压电陶瓷制造呈现出结构复杂化与个性化的发展趋势。数字光处理(Dig
学位
钙矾石是水泥混凝土中的重要水化产物,对水泥早期性能和强度发展至关重要,此外,其还是一种潜在的经济性良好的重金属离子固化剂。但钙矾石结构复杂,其形成过程和稳定性对环境十分敏感,而且对不同重金属离子的固化机理相距甚远,这些隐藏在背后的规律仍然是一个未解之谜。研究重金属离子对钙矾石形成和稳定性的影响及重金属离子掺杂前后钙矾石结构的变化,对钙矾石的功能化应用具有重大意义。本文通过化学合成重金属离子掺杂型钙
学位
钢渣是钢铁冶炼过程中产生的一种工业副产品,产量逐年增加。钢渣较低的胶凝性能及潜在的安定性问题是限制其发展及工程应用的关键因素。目前我国钢渣的综合利用率只有30%,大量钢渣随意弃置及填埋,造成土地浪费、地下水及土壤污染的问题日益严峻。通过加速碳化养护钢渣制备高性能混凝土,不仅实现了钢渣的资源化利用,还起到了减少CO2排放的作用。本文基于颗粒最紧密堆积理论,创新提出一种浇筑成型的高性能可碳化混凝土(H
学位
聚合物电介质材料由于具有高击穿场强、良好的柔性和易于加工等优点,被广泛应用于电子电力系统和能源电网等领域。近年来,随着电子器件向着微型化和集成化的方向发展,这就对电介质材料的储能密度提出了更高的要求。为了进一步提高聚合物电介质材料的储能密度,研究者们将目光投向了有机/无机复合材料。根据储能密度的计算公式,储能密度与击穿场强的平方成正比,因此,提高材料的击穿场强能在更大程度上提升其储能密度。最近几年
学位