等离子喷涂热障涂层粒子界面调控及应用

来源 :西安工业大学 | 被引量 : 0次 | 上传用户:sun3kai
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着科技水平的发展以及社会的需求,航空航天发动机、燃气轮机高温部件对热障涂层(Thermal Barrier Coatings,TBCs)隔热能力的要求越来越高。因此,提高热障涂层隔热能力和使用寿命对我国航空航天事业的发展至关重要;大气等离子喷涂(Atmospheric Plasma Spraying,APS)技术制备的热障涂层广泛应用于航空航天发动机、燃气轮机的高温部件,TBCs是具有多层结构、隔热保护作用的功能性涂层,具有较低的热导率、优良的隔热性能,且APS所制备的热障涂层具有典型的层状结构;为了提高APS技术制备的TBC的导热和力学性能,本研究利用APS技术制备的TBC具有层状结构的特性,在等离子喷涂制备热障涂层的过程中通过改变层间粒子界面结合角度制备出一种新型层间界面结合的热障涂层,并结合实验与数值模拟研究其导热性能、力学性能的演变,优化层间结合角度。(1)使用大气等离子喷涂技术制备出同向旋转和交错旋转不同粒子界面结合角度热障涂层,粒子界面结合角度分别为0°、15°、30°、45°、60°、75°、90°。通过X射线衍射仪(XRD)对陶瓷层粉末、热障涂层陶瓷层进行物相分析,研究发现其物相基本无差异,均为单斜相和四方相氧化锆;通过扫描显微镜(SEM)对热障涂层进行显微组织分析,研究发现层间粒子界面结合角度90°热障涂层的纵截面孔隙较为密集,层间结合最优,层间结合区最小。(2)使用激光闪光法、维氏硬度法、压痕法研究同向旋转和交错旋转不同粒子界面结合角度热障涂层的导热性能和力学性能。研究发现层间粒子界面结合角度90°热障涂层热导率最低,为1.609W/m·K,与常规等离子喷涂热障涂层相比,热导率降低8.9%,硬度提升63.7%,断裂韧性提升29.7%,在保证足够硬度的情况下提高韧性,有利于提高TBC的抗断裂破坏能力,为高隔热长寿命TBC奠定基础。交错旋转层间粒子界面结合角度75°热障涂层的断裂韧性最高。(3)使用Solid Works软件建立同向旋转和交错旋转不同粒子界面结合角度热障涂层模型,粒子界面结合角度分别为0°、15°、30°、45°、60°、75°、90°。使用Ansys软件,对同向旋转和交错旋转不同粒子界面结合角度热障涂层模型进行导热和力学模拟,分析热障涂层等效热导率以及其变形能力。研究发现层间粒子界面结合角度90°热障涂层等效热导率最低,为0.834W/m·K,交错旋转层间粒子界面结合角度75°热障涂层陶瓷层的抗变形能力最强,变形量为0.364×10-10m。
其他文献
在各种能源中,氢能由于具有高能量密度和环境友好的特点,被认为是传统化石燃料优良的替代品。电解水不仅可以以环保的方式将电能转化为化学能,还易与其他间歇性能源(如太阳能)相结合,为高纯度制氢提供了一个很有前景的解决方案。然而,析氢反应需要较大的驱动过电位,导致消耗较高的能量,故合理选择高效的催化材料成为了研究重点。高熵合金因其组分易调控和催化活性高等特点被广泛关注。本文采用“自下而上”(Bottom-
学位
作为最重要的储能设备之一,超级电容器因其出色的功率密度和良好的循环稳定性而被广泛用于储能系统以及电动汽车等方面。其中,电极材料是超级电容器的核心,在超级电容器的商业化中起着关键作用。在众多电极材料中,二维材料凭借其独特的层状结构、丰富的理化性质而备受关注。基于此,本文选取结构匹配、性能互补的二维层状材料Ti3C2Tx MXene和NiCo-LDHs为研究对象,将这两种二维层状材料进行层间组装来构建
学位
压电材料作为一类能够直接实现机械能与电能有效转换的功能电子材料,广泛应用于机械制造、电子通讯、军事等领域,在力、热、光、电、磁等功能转换器件中具有广阔的应用前景。如汽车内燃机的电喷装置,要求压电材料在200℃甚至300℃以上的高温环境下稳定工作等,高温压电材料及其器件的高温应用研究受到了前所未有的关注。高居里温度、高退极化温度和高压电性能是作为高温压电能量收集材料的必备要素。而这些宏观特性反映在材
学位
近年来,石油基高分子材料造成的环境污染和石油消耗引起了全世界的关注,开发可再生和可降解聚合物基材料至关重要。聚乳酸(PLA)是一种天然合成高分子材料,具有优异的生物降解性和生物相容性,然而其结晶性能差、耐热性差和“硬而脆”的机械性能导致应用范围被限制。MXene是一种二维无机碳氮化合物,具有优异的机械性能,并且它可以作为成核剂提升结晶速率。聚己二酸对苯二甲酸丁二醇酯(PBAT)是一种环境友好型材料
学位
随着社会工业化的发展,化石能源的过度开采也导致了环境污染和能源短缺的双重危机,寻找可再生清洁能源来代替化石能源一直是我们需要高度关注并去解决的问题。氢气作为一种可再生清洁能源,资源丰富而且不会污染环境,是代替化石能源的不二选择。而利用光催化技术分解水生成氢气也被认为是解决危机的理想策略,但研究出性能好且稳定的光催化剂是光催化技术的核心。而高熵氧化物因为其独特的晶体结构、丰富的活性位点、高温相稳定性
学位
近年来,为了减少和消除电磁辐射污染,迫切需要合理设计和简便制备吸收能力强、重量轻、厚度薄、有效吸收带宽宽的电磁波吸收材料。石墨烯气凝胶作为一种新型微波吸收剂,其多孔结构、大比表面积和活性位点丰富等特性均有利于电磁波在材料内部空间的损耗,从而实现对电磁波的衰减。但导电性高、阻抗匹配失衡和单一损耗机制阻碍了石墨烯气凝胶在微波吸收领域的应用。对此,考虑到磁性材料与碳材料之间良好的磁/介电协同机制,可以在
学位
高熵合金因其独特的多元固溶体和优异的强韧性而受到越来越多的关注。蠕墨铸铁气缸盖的气门座孔在高温下长期使用会产生严重磨损,影响发动机的有效工作。通过等离子熔覆在蠕墨铸铁表面制备CoCrFeNiMn高熵合金熔覆层,以提高其耐磨性能。本研究以CoCrFeNi系合金为基础,通过向其中添加不同含量的Mn元素,进行粉末成分设计及优化。通过等离子熔覆方法来制备CoCrFeNi系合金熔覆层,探究Mn元素含量对Co
学位
在现代社会能源危机与环境问题日益严峻的情况下,降低整车重量促进整车轻量化,是提高整车燃油效率,节省能源以及降低废气排放等方面的有效手段。故而,当今社会的汽车更倾向于选择重量轻,综合性能优良,表面质量好,可回收利用和成本较低的材料来进行生产。A356铝合金恰恰复合以上特点。A356铝合金具有多种优秀特点,如合金在熔液状态时具有良好的流动性,凝固后,合金铸件的气密性小但是常规铸态A356铝合金显微组织
学位
聚噻吩及其衍生物是一类性能优异的导电聚合物,可广泛应用于电致变色显示、热控、动态伪装、超级电容器、传感器、有机或染料敏化太阳能电池等领域。但由聚噻吩及其衍生物制得的电致变色薄膜存在光学对比度低、循环稳定性差等缺点,从而限制了其在电致变色器件(ECDs)中的应用。为了进一步提高其变色的循环稳定性,本论文采用恒电位沉积法和喷涂法制备了一系列聚噻吩类电致变色薄膜,通过对电极表面进行纳米化修饰和改变聚合物
学位
选区激光熔化(SLM)技术是近十年来最先进的增材制造技术之一。该技术制备的Si Cp/Al基金属反射镜具备低体积比、低热膨胀系数和高材料比强度的主要特点,现已广泛应用于航空、航天等领域。Si Cp/Al复合材料属于多晶结构,在光学加工中晶体各向异性和杂质会致使镜面的光洁度变差,从而导致镜面反射率减小。因此,需要对反射镜进行表面改性处理,采用化学镀的方式对其表面制备一层镍-磷非晶薄膜,在经过光学加工
学位