一维MnO2纳米材料的介电特性与宽带微波吸收性能研究

来源 :北京化工大学 | 被引量 : 0次 | 上传用户:dzxxdzc2
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着通讯技术和雷达技术发飞速发展,防止电子设备的电磁泄漏和实现武器装备的高效率电磁隐身已经成为吸波材料的研究重点领域。当前吸波材料的研究方向已经聚焦于低密度、强吸收、宽带宽和化学稳定性等方面。MnO2纳米材料具有非常高的介电常数和介电损耗,对于增强微波衰减有促进作用。材料的介电特性与微观形貌有很大关系,但是MnO2纳米材料的介电特性与其结构之间的内在联系尚未明确,因此研究不同MnO2纳米结构的电磁响应特性对调整吸波性能有重要意义。
  本文采用水热法,通过不同反应条件合成了具有纳米棒和纳米管两种结构的MnO2纳米材料。纳米棒和纳米管都具有单一的形貌和稳定的结构。MnO2纳米棒和纳米管材料都是α相,具有[MnO6]八面体晶格结构。对于这两种一维结构复合材料,复介电常数实部ε和虚部ε"都随着样品加载量的增加而变大。随着测试频率的增大,所有样品的ε值逐渐减小,表现出了典型的德拜松弛行为。由于极化电荷的积累和聚集,ε"值随着频率的增大而增大。更大的比表面积和更多的表面偶极子发生极化效应,使得纳米管表现出比纳米棒更高的介电常数和介电损耗。因此MnO2纳米管能够在低的加载量(30wt%)和较薄的厚度(1mm)下实现-10dB有效吸波性能,并且在电磁波大角度入射时仍然具备有效吸波能力。而MnO2纳米棒在4.8mm厚度下可以实现3.44GHz带宽的有效吸波能力。经过超材料结构设计后,MnO2纳米棒能够达到14.32GHz的有效吸波带宽。由此可见,MnO2纳米材料是一种潜在的高性能吸波材料,将在许多领域展现出巨大的应用价值。
其他文献
光在人类文明发展史上具有举足轻重的地位。人类追光的过程就像一部惊心动魄的电视连续剧。《圣经》中“神说,要有光,就有了光”作为开场白开启了这部电视剧。西方古希腊哲学家毕达哥拉斯等人认为光是像水流一样的客观实在;同时期的东方战国思想家墨子提出了光学八条(《墨经》),论述了光影关系。剧情不温不火的到了17世纪,英国物理学家牛顿提出了光是一个微小粒子的学说,并成功地解释了光学中的折射和反射现象。然而以惠更斯为首的另一派则认为光是一种波,这样可以很好地解释干涉、衍射等现象。两派的斗争愈演愈烈,到了19世纪,随着泊松
量子力学与信息学的结合产生了量子信息学。量子信息学的基础是使用量子态来编码信息,即量子比特。由于量子系统拥有纠缠和相干等量子关联,这些关联使得某些量子任务拥有超越经典任务的能力。由于这种重要性,纠缠和相干的资源化理论依次建立。在各种量子体系中,线性光学体系在研究量子系统性质方面拥有非常显著的优势,其中包括:光子与周围环境的耦合非常弱,光学体系的相干时间非常长,实验可以在常温下进行。
  因此,本文着眼于利用线性光学体系来研究量子系统的相干与纠缠的探测和度量。其中,第五到七章是本文的重点。
  
量子模拟作为新兴的研究领域近十几年来受到人们的广泛关注。随着激光冷却和蒸发冷却技术的发展,人们相继在超冷原子平台上实现了玻色子凝聚与简并费米气体凝聚。超冷原子体系有着丰富的量子调控手段,如人工规范场技术实现了原子自旋与质心动量的耦合,磁Feshbach共振技术实现了原子间相互作用强度的调节,光晶格技术实现了原子在周期势场中不同格点上的占据和跃迁等等。这些技术的发展使得超冷原子成为理想的量子模拟平台,人们在超冷原子平台上做出了许多有趣且意义深刻的工作,如观测简并费米子的Bardeen-Cooper-Schi
量子存储器是实现基于光纤通信的远程量子网络所必不可少的核心器件。固体中的稀土离子因其工作波段丰富、相干寿命长、存储带宽大、模式复用能力优异、易于加工、便于集成等显著优势,被广泛认可为实现量子存储最有前景的物理体系之一。对于固体中的稀土离子,将光学激发转移至基态核自旋能级可以显著增加量子信息的存储时间,并使存储器具备按需读取的能力。稀土离子电子自旋在磁场下的塞曼作用,及其与核自旋的超精细作用可达GHz量级,从而能有效支持高带宽、多模式的量子存储。电子自旋磁矩的存在还能够有效地抑制宿主晶体核自旋的量子退相干效
近几年,2D-3D异质结结构由于可以作为密集型集成光路的良好平台而受到了广泛的关注,该异质结结构既可以充分利用二维结构中器件设计简单、传输效果良好的特点,又可以借助woodpile结构实现沿堆叠方向器件的集成化。本文采用时域有限差分法(FDTD),详细地研究了工作于太赫兹波段的2D-3D异质结结构中的定向耦合器、直波导、空间集成波导和波分复用器等传输特性。具体研究内容如下:
  首先,在2D-3D异质结结构的2D层设计了平面型定向耦合器,通过对定向耦合器两侧woodpile结构参数的调制和2D平面两
随着不可循环能源的储备量减少,新式可循环能源的研发是现阶段世界各国所关注的重要话题,此时,热电材料因其可循环无污染的特点引起各界的关注。本文研究了两种中高温材料的电子特性和热电特性,并研究了掺杂对热电性质的影响。具有高热电特性和低成本环保成分的Half-Heusler化合物因其高电导率和塞贝克系数而备受关注。且近年来,发现三元黄铜矿半导体Ⅰ-Ⅲ-Ⅳ2(Ⅰ=Ag,Cu;Ⅲ=Al,Ga,In;Ⅳ=S,Se,Te)也是一种潜在的高性能热电材料。所得结论如下:
  一、研究了Ti1-xZrxPdSn(X=0
孤立量子系统中的非平衡演化,可以利用量子淬火的方法驱动系统动力学量子相变,借助拓扑不变量分析各个拓扑模型经历量子相变后在量子临界点附近的相关行为。本文借助一维二聚化Kitaev模型,对处于链两端的Majorana零模在不同淬灭路径下的生存概率进行了探讨。在此之前,我们先通过分析体系的哈密顿量给出了模型的拓扑相图,接着计算了周期性边界条件和开放边界条件下的能谱图,结果证明利用Majorana零模能够敏感的区分出不同的拓扑相域。再利用拓扑相图确定出哈密顿量的参数空间,在其中选取拓扑性质不同的初末态点,结果发现
在科学技术的实际应用以及基础研究领域(例如血液学和半导体制造工业)中,确定空间中微观颗粒的速度非常重要。现有的微粒速度测量仪器或测量方法,包括粒子图像测速仪、荧光相关光谱和激光多普勒测速仪等,具有速度测量上限低、微粒通量低、空间分辨率低、需要引入外部标记等缺陷。光学时间拉伸显微成像技术作为一种超高速的显微成像技术,其帧率能达到数十兆赫兹。并且光学时间拉伸显微成像技术使用近红外光作为光源,对活体细胞或组织没有侵害性。因此,将光学时间拉伸显微成像技术用于测量微粒速度有很重要的研究价值。
  本论文,从原
现今社会,大量石化塑料被广泛使用,塑料固体废物日益增长,然而如聚乙烯和聚苯乙烯等塑料却是高度稳定的聚合物,具有高分子量和强疏水性,碳链也具有很强的抵抗氧化-还原酶裂解的性质,阻碍降解的特点十分明显,由此产生了严重的生态问题。如何更加环保高效地实现对塑料的降解是摆在人类面前的一个重大难题,而实现聚合物中高度稳定的连续的C-C骨架结构的断裂或氧化是塑料降解中的关键之处。
  因此,本论文研究首先分析了P450OleTJE酶催化脂肪酸脱羧过程中产生的自由基结构或离子结构的性质,发现碱性环境和含碳正离子的结
激光监听最早在1988年被提出并报导,是利用激光的调制和解调来实现对目标几近实时的现代定位和监听技术。相对于其他电子监听器,激光监听技术具有灵活性强,隐蔽性好,安全性高等优势,近年来受到广泛关注,成为监听技术发展的一个重要研究方向,而该技术的成熟对于公安,军事,国防也具有重要意义。激光传输过程中由于外界环境因素的干扰,解调得到的混合信号既包含目标语音,又包含干扰噪声。不同的监听条件下,产生不同类型的干扰噪声,因此信噪分离方法的选取尤为重要。传统的语音增强算法对相对平稳的噪声具有很好的抑制效果,而近年来有监